biovie

Developing Transformative
Therapies to Overcome Chronic
Debilitating Diseases

Corporate Presentation • November 2022

Forward-looking statements

This document contains forward-looking statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 that involve risks, uncertainties and assumptions that could cause BioVie's actual results and experience to differ materially from anticipated results and expectations expressed in these forward-looking statements. BioVie has in some cases identified forward-looking statements by using words such as "anticipates," "believes," "hopes," "estimates," "looks," "expects," "plans," "intends," "goal," "potential," "may," "suggest," and similar expressions. Among other factors that could cause actual results to differ materially from those expressed in forwardlooking statements are: BioVie's need for, and the availability of, substantial capital in the future to fund its operations and research and development. Other risks are that BioVie's compounds may not successfully complete pre-clinical or clinical testing or be granted regulatory approval to be sold and marketed in the United States or elsewhere. BioVie cannot guarantee the effectiveness of its patents or Orphan Drug designations. A more complete description of these risk factors is included in BioVie's filings with the Securities and Exchange Commission. In addition to the risks described above and in BioVie's filings with the Securities and Exchange Commission, other unknown or unpredictable factors also could affect BioVie's results. No forward-looking statements can be guaranteed and actual results may differ materially from such statements. You should not place undue reliance on any forward-looking statements. BioVie undertakes no obligation to release publicly the results of any revisions to any such forward-looking statements that may be made to reflect events or circumstances after the date that these slides are posted to BioVie's website or to reflect the occurrence of unanticipated events, except as required by applicable law or regulation.

Highlights

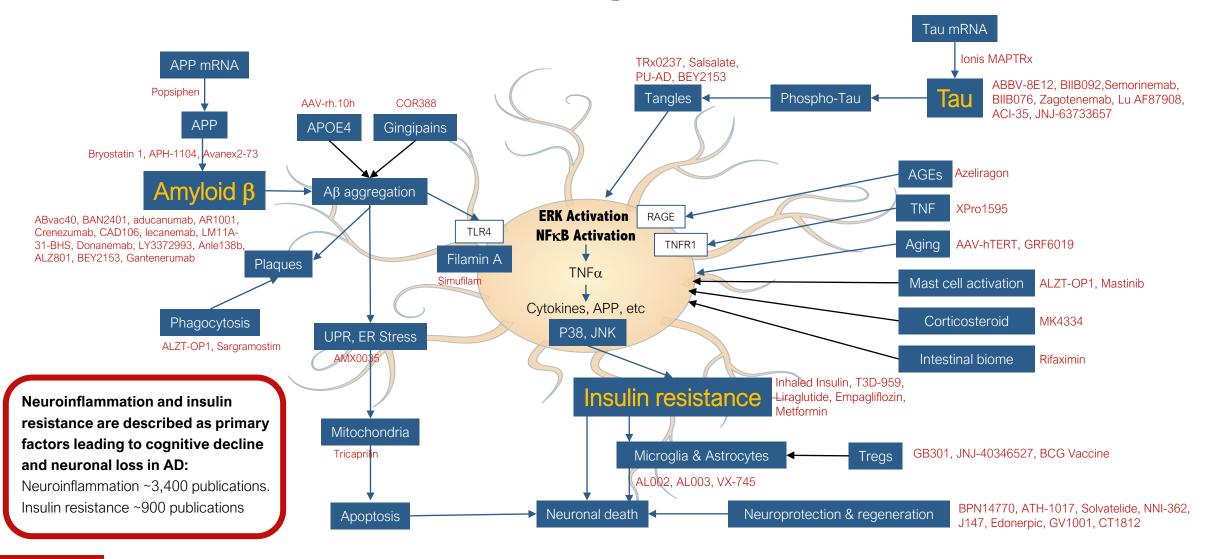
NE3107 is the only inhibitor, to our knowledge, that is being studied for of inflammation and insulin resistance in Phase 3 trials for Alzheimer's Disease (AD)

- NE3107 is believed to potentially reduce neuroinflammation and insulin resistance in randomized, double-blinded, placebo-controlled Phase 2 study; potential to address the two factors described as potential key drivers of cognitive decline in AD
- Phase 3 patient enrollment underway; ramping to 45 centers; data readout anticipated mid-2023
- \$10+ billion annual peak sales potential

NE3107 is also being studied developed for Parkinson's disease (PD) based on similar mechanism of action

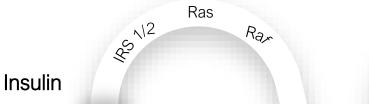
- NE3107 equally pro-motoric as levodopa, reduced severity of levodopa induced dyskinesia (LID), and preserved twice as many neurons as untreated in preclinical studies
- Phase 2 trial start 1Q22; data readout anticipated before EOY2022
- \$3+ billion annual peak sales potential

BIV201 is the only drug to our knowledge, currently in development for refractory ascites, a condition with 50% mortality rate


- Formulation of terlipressin for continuous infusion; Method of use patent for treatment of ascites; potential to become first therapy since there are no approved drugs in the US; Orphan and Fast Track designations received
- Decades of data gathered from European/Asia; No drug-related SAEs in trials thus far
- Phase 2b underway with data readout anticipated mid-2023
- \$1+ billion global peak sales potential

Expected Catalysts & anticipated timelines (US)

Alzheimer's Disease Pathways


Background on NE3107

CH₃ OH CH₁₈ OH CH₁₉ OH CH₁₉ OH 16 II 16 II OH OH

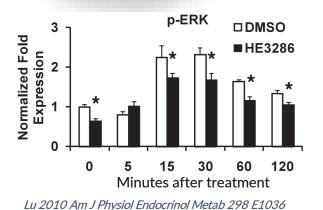
First-in-class molecule with desirable characteristics

- Small molecule; orally bioavailable
- Crosses blood-brain barrier, thus CNS and peripheral applications
- No safety issues identified to date in pre-clinical and clinical trials (up to Phase 2)
- Originated by Hollis-Eden Pharmaceuticals (renamed Harbor Therapeutics)
 - NE3107¹ is a synthetic analogue of a metabolite of the adrenal hormone DHEA
- Phase 1 and 2 trials in diabetic patients showed that NE3107:
 - Showed no differences in AEs compared to placebo
 - Decreased insulin resistance, postprandial glucose and HbA1c compared to placebo
 - Decreased inflammation-driven systems dysregulation of inflammatory, hematopoietic and metabolic parameters compared to placebo
- Neurmedix eventually bought the assets and hired the lead scientists with the mandate to:
 - Determine NE3107's mechanism of action
 - Get the drug back into the clinic
- NE3107 turns out to have a very unique and unexpected mechanism of action

NE3107 blocks inflammatory (but not homeostatic) ERK and NFkB, which play pivotal roles in AD pathogensis¹

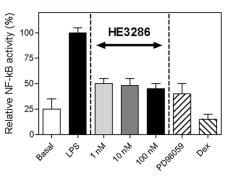
Extracellular signals

(e.g., cytokines, chemokines, Aβ, tangles, etc.)

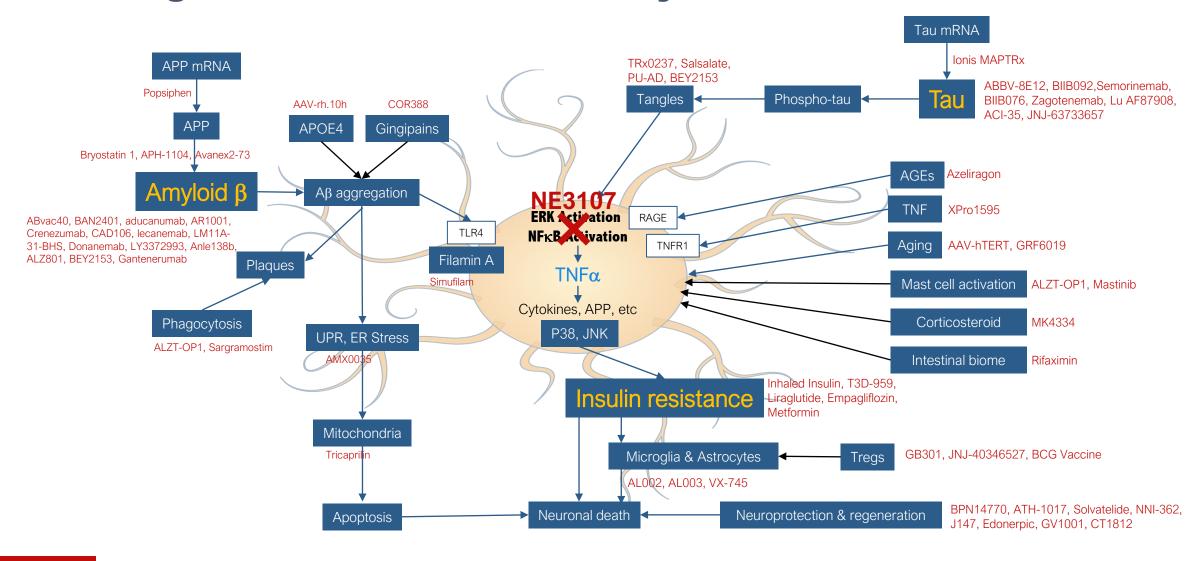

MEK

Cell/Synapse growth, repair, and regeneration

 $TNF\alpha$


Inflammatory factors (e.g., p38, JNK, cytokines, etc.)

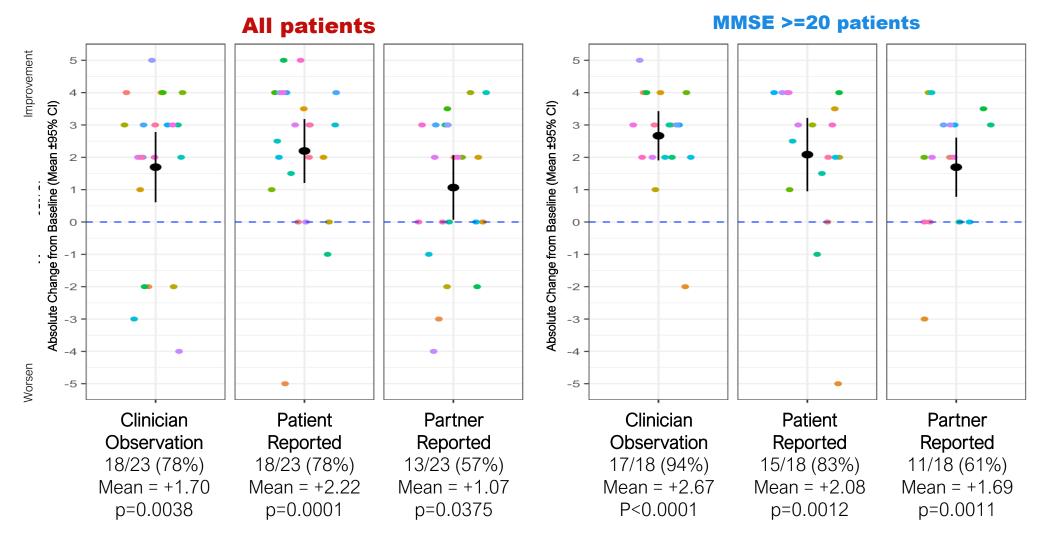
NE3107 Reduces ERK Activation



Wang 2010 J Pharmacol Exp Ther 333 70

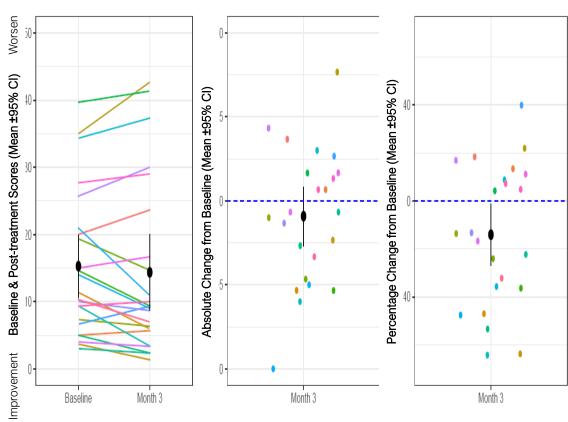
NE3107 Reduces NFkB Activity

NE3107 modulates inflammation at the central hub, thereby reducing downstream inflammatory cascade

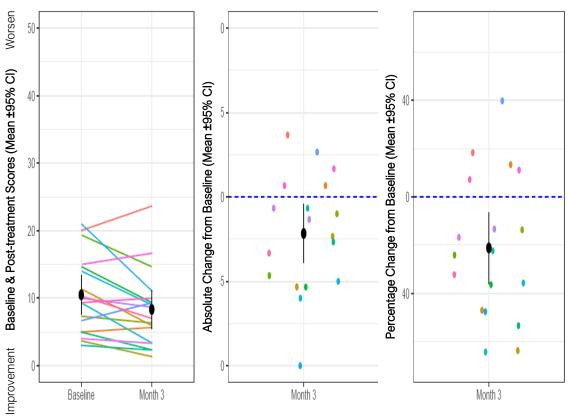


Investigator-Sponsored Trial in MCI and Mild Alzheimer's Disease, NCT05227820

An open-label, Investigator-Initiated exploratory biomarker study in patients who have MCI to Mild AD


- 55-89 years old, males and females experiencing cognitive decline with Clinical Dementia Rating (CDR) score of 0.5 to 1, suggesting mild cognitive impairment to mild dementia
- Study seeks to measure changes in cognition through verbal and visual test procedures and changes in biomarkers of Alzheimer's disease and inflammatory and metabolic parameters that can be measured in the CNS with advanced neuroimaging techniques in patients before and after treatment with 20 mg of NE3107 twice daily for 3 months
- Use advanced functional magnetic resonance imaging (fMRI) to assess change from baseline to completion
 - Change in glutathione levels will be analyzed as measured by Magnetic Resonance Spectroscopy (MRS)
 - Change in Diffusion Tensor Imaging Neurite Orientation Dispersion Density Imaging (DTI-NODDI) to assess stabilization and or improvement in dendritic density
 - Change in Arterial Spin Labeling (ASL); change in functional connectivity of the nucleus basalis of meynert (NBM) with both hippocampi as well as between both hippocampi; and change in Neurovascular Coupling (NVR) as measured on BOLD imaging
- Additional exploratory endpoints
 - Clinical Dementia Rating Change as calculated from the Quick Dementia Rating Scale (QDRS) Change
 - Montreal Cognitive Assessment (MoCA) Change
 - Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog11) Change
 - Mini-Mental State Examination (MMSE) Change
 - Glucose Serology/Metabolic Level Change

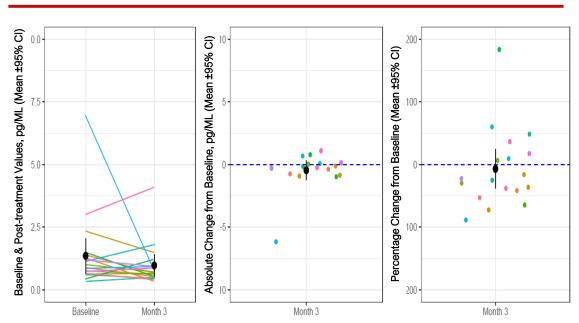
Large majority of patients improved significantly on the **Global Rating of Change (overall impression)**


Significant improvements in ADAS-Cog12 assessment of cognition among MCI/Mild AD patients

All patients

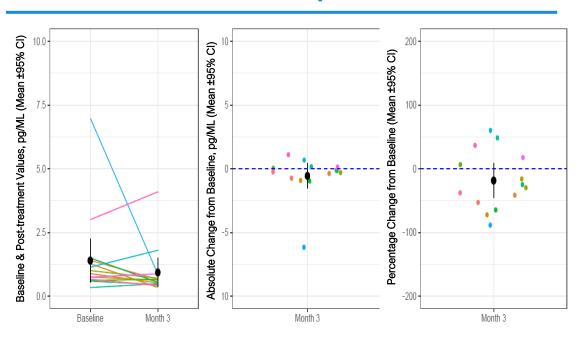
13/23 improved (57%) Mean Absolute Change = -0.91 (p=ns) Mean % Change = -14.1% (p=0.0333)

MMSE >=20 patients



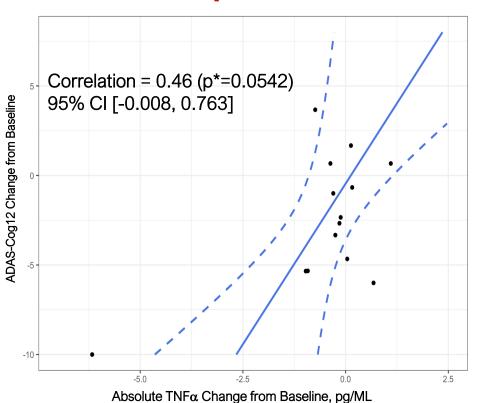
13/18 improved (72%)¹ Mean Absolute Change = -2.2 (p=0.0173) Mean % Change = -21.1% (p=0.0079)

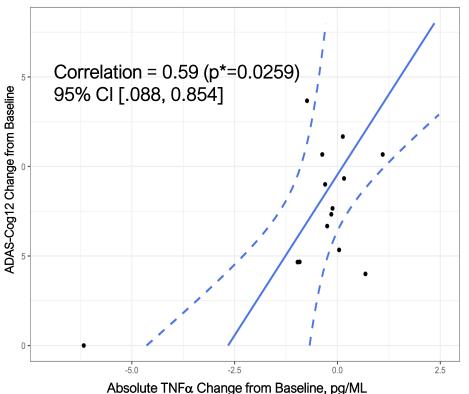
Improvements on TNF α among MCI/Mild AD patients


Tumor Necrosis Factor Alpha (TNF α) is a cytokine identified as a major regulator of inflammation whereby its excessive activation is associated with chronic inflammation¹

All patients

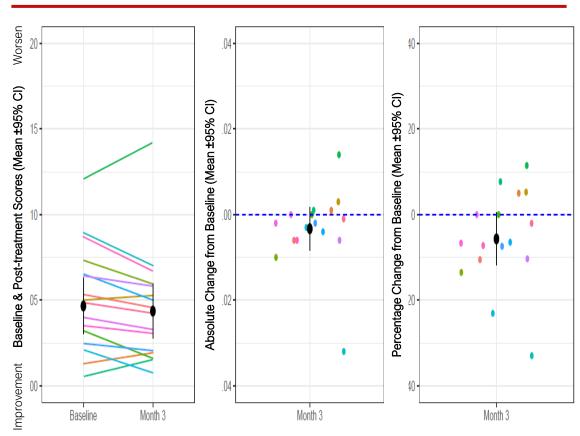
11/18 improved (61%) Mean Absolute Change = -0.45 (p=ns) Mean % Change = -6.9%% (p=ns)


MMSE >=20 patients

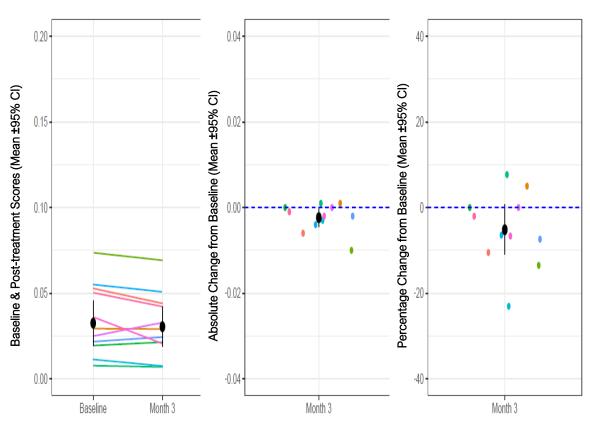

9/14 improved (64%)² Mean Absolute Change = -0.563 (p=ns) Mean % Change = -18.5% (p=ns)

Improvements in TNF α significantly correlated to improvements in ADAS-Cog12

All patients



MMSE >=20 patients

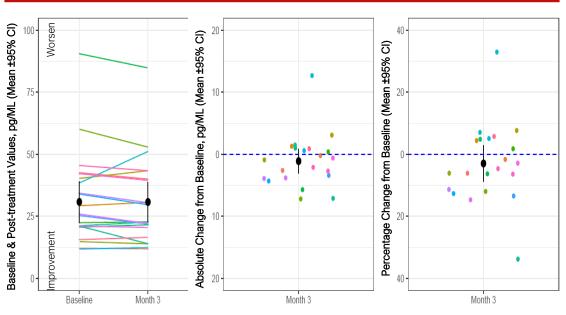

Significant improvements in the CSF p-tau : $A\beta_{42}$ Ratio, a predictive measure of PET amyloid status¹...

All patients

10/16 improved (63%) Mean Absolute Change = -0.0033 (p=0.1747) Mean % Change = -5.67% (p=0.0648)

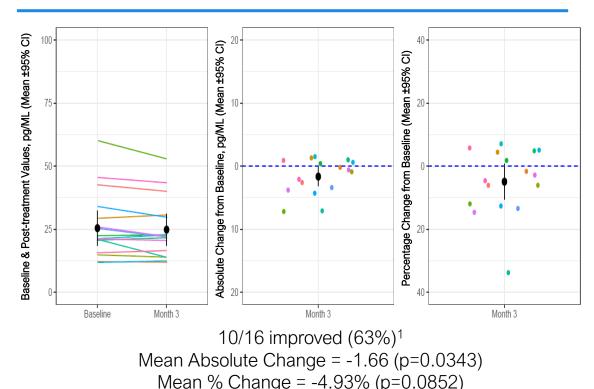
MMSE >=20 patients

7/11 improved (64%)² Mean Absolute Change = -0.0024 (p=0.0401) Mean % Change = -5.18% (p=0.077)


biovie

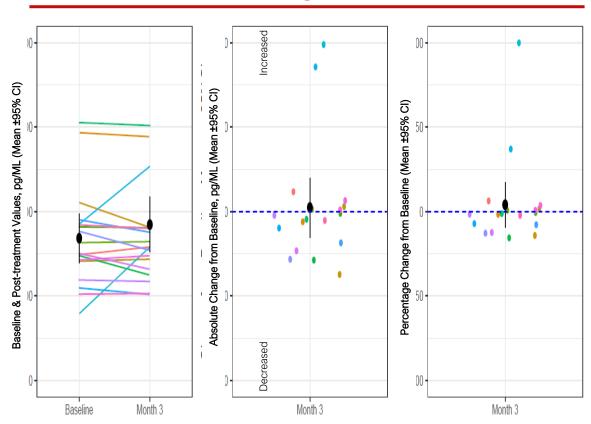
^{1.} Campbell et al. Alzheimers Dement (Amst). 2021; 13(1): e12190

^{2.} Among responders: Mean Absolute Change = -0.0040 (p=0.0144); Mean % Change = -10.0% (p=0.0082)

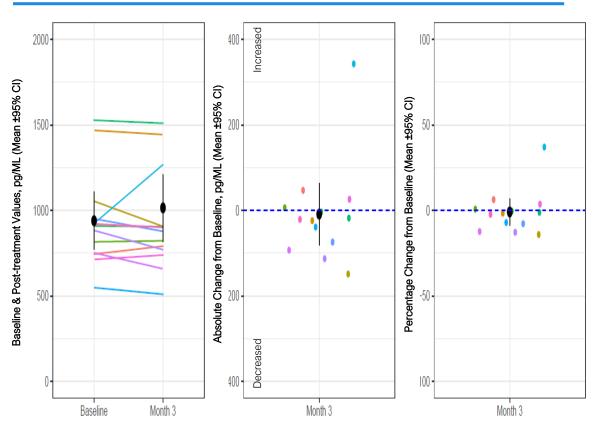

... Driven by a significant improvements in CSF p-tau

All patients

13/21 improved (62%) Mean Absolute Change = -1.10 (p=0.2545) Mean % Change = -2.96% (p=ns)


MMSE >=20 patients

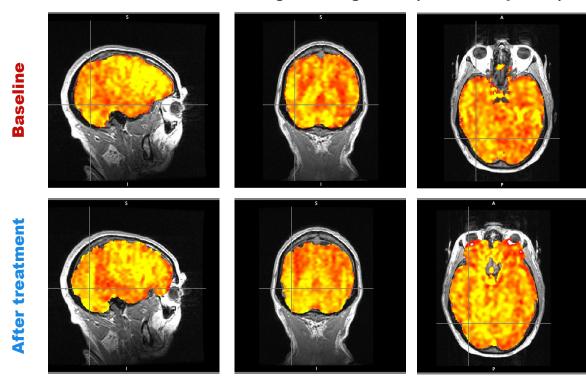
- NE3107 decreased CSF p-tau by 5% over 3 months among MCI/Mild AD patients
- Due to NE3107's mechanism, reduction in p-tau levels are expected to increase and accumulate over time


Modest improvements in CSF $A\beta_{42}$

All patients

11/18 decreased (61%) Mean Absolute Change = 9.7 (p=ns) Mean % Change = 4.1% (p=ns)

MMSE >=20 patients

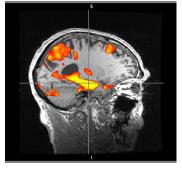


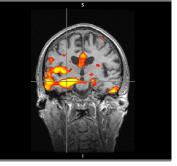
9/13 decreased (69%) Mean Absolute Change = -8.69 (p=ns) Mean % Change = -0.92% (p=ns)

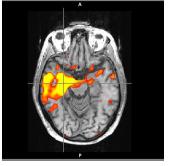
Arterial Spin Label Imaging suggests NE3107 enhances blood flow in the brain, a marker for brain activity

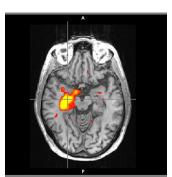
- Arterial Spin Label Imaging looks at the flow of oxygenated hemoglobin
- Yellow indicates the most relative enhancement of flow while red indicates enhancement.

Patient N08 – Global Rating of Change +3.5 (Partner Reported)

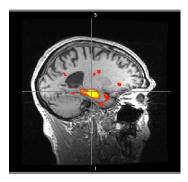

- 17% of 17 patients with MMSE >=20 had "signal" improvements in the ASL in relevant areas (temporal parietal occipital) compared to baseline. Increased blood flow serves as a marker for brain activity
- 12% of 17 patients declined

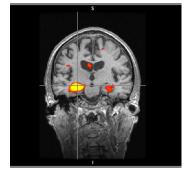

Blood Oxygen Level-Dependent (BOLD) imaging shows NE3107 can reduce hyperactivation of the hippocampus¹ towards normal


- BOLD imaging looks at the release of oxygen from blood to the tissues and characterizes network connectivity
- Image coloration indicates hyperactivation by stressed cells seeking help


Patient N08 – Global Rating of Change +3.5 (Partner Reported)

Baseline





Among patients with MMSE >= 20

- Left lobe: 44% of 17 patients improved while 6% declined
- Right lobe: 39% of 17 patients improved while 6% declined

After treatment

The multifactorial nature of dementia pathology

- AD drug development at BioVie is based on the evidence that AD pathology is multifactorial in nature
 - While AB and p-tau are important factors, decades of research on dozens of agents have not conclusively correlated improvements on these individual factors to improvements in cognition
 - We believe additional factors such as inflammation, insulin resistance, metabolic dyshomeostasis, apoptosis, oxidative stress, and glucose utilization also play critical roles in AD etiology
- Data shows that NE3107's ability to reduce TNF α (the major regulator of inflammation) is highly correlated to improvements in cognition
 - We are pleased that the Principal Investigator observed these changes in 23 patients in only 3 months
 - We hypothesize that the modulation of TNF α levels and its inflammatory activation via TNFR1 lead to a multitude of changes among the many factors downstream from this master regulator, which collectively lead to improvements in neuronal health and cognition
- Continued hypothesis testing and data analyses will be presented by the Principal Investigator and his team at the Clinical Trial in Alzheimer's Disease (CTAD) annual conference, to be held in San Francisco, CA November 29-December 2, 2022.

NM101: Phase 3 trial in Mild to Moderate Alzheimer's Disease, NCT04669028

A Phase 3, Double-blind, Randomized, Placebo-controlled, Parallel Group, Multicenter Study of NE3107 in 316 to 400 Patients who have Mild to Moderate AD

- Pivotal study for Alzheimer's disease. Two weeks each of 5 mg and 10 mg BID dose titration followed by 26 weeks of 20 mg twice daily vs. placebo, approximately 160 subjects in each arm, 80% power
- Diagnosed with AD and without evidence of a vascular contribution. Mild to moderate disease. CDR 1-2. MMSE 14-24.
- 60-85 years old, males and females
- Randomization stratified by MMSE and Homeostatic Model Assessment 2 Insulin Resistance (HOMA2)
- Co-primary endpoints
 - Mean change from Baseline to Week 30 in the twelve-question form of the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog 12) comparing the NE3107 group to the
 placebo group
 - Mean change from Baseline to Week 30 in Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change (ADCS-CGIC) comparing the NE3107 group to the placebo group
- Secondary endpoints
 - ADCS-ADL (functional), ADCOMS (4 Alzheimer's Disease Assessment Scale-cognitive subscale items, 2 Mini-Mental State Examination items, and all 6 Clinical Dementia Rating-Sum of Boxes items), NPI-12 (care-giver rating of behavioral changes), MMSE, CDR
 - Glycemic control: HOMA2, Mean Amplitude of Glycemic Excursion (MAGE) using continuous glucose monitoring, fructosamine levels, post-prandial glucose and fasting blood glucose vs time.
 - MRI total hippocampus volume change, baseline to end of treatment in a subset of approximately 50% of active and placebo subjects
 - Target engagement assessed in a small subset of active and placebo subjects using PET to quantify cortical glucose utilization

Remarkable Similarities Between Neurodegenerative Diseases

Neuroinflammation and oxidative stress are common features in the major neurodegenerative diseases, Alzheimer's, Parkinson's, frontotemporal lobar dementia and ALS

Remarkable parallels exist between AD and PD

Activated microglia-inflammation

Mitochondrial dysfunction and oxidative stress

Endoplasmic reticulum stress- unfolded protein response

TNF driven

Misfolded protein aggregates (alpha synuclein, Lewy bodies for PD)

Insulin resistance, metabolic dysfunction

Controversial etiology, slow progression

Proceeding to Clinical Development for Parkinson's Disease

NE3107 reduced inflammation and enhanced insulin sensitivity in animal models¹, both of which have been shown to reduce PD pathology

- Reduction of inflammation itself may be beneficial since both inflammation and low dopamine environment are required for Parkinsonism
- NE3107 was promotoric, reduced LID and preserved dopaminergic neurons in marmosets

FDA requires a drug-drug interaction study before proceeding to later phase trials in patients that might use or need levodopa

 No indications of DDI in animal studies have been observed Our Phase 2 is a combined DDI and efficacy program to test a clear and plausible hypothesis

Decreased inflammation > increased insulin sensitivity > disease amelioration

- Promotoric activity
- Reduction in LID

Parkinson's Disease Clinical Development Program

NM201 Phase 2

 Assess NE3107 pro-motoric activity while satisfying FDA requirement for drug-drug interaction study with L-dopa 40 patients with defined L-dopa "off state", 1:1 active: placebo, 20 mg BID for 28 days

- Safety assessments: Standard measures of patient health, Ldopa PK and DDI
- Efficacy assessments: MDS-UPDRS* parts 1-3, Hauser ON/OFF Diary, Non-Motor Symptom Scale

NM202 Phase 3

- Possibly pivotal design
- Evaluate NE3107 promotoric activity in 200 patients needing to start L-dopa or (depending on Phase 2 results) 200 patients on L-dopa therapy for more than 3 years
- Primary endpoint MDS-UPDRS parts 1-4

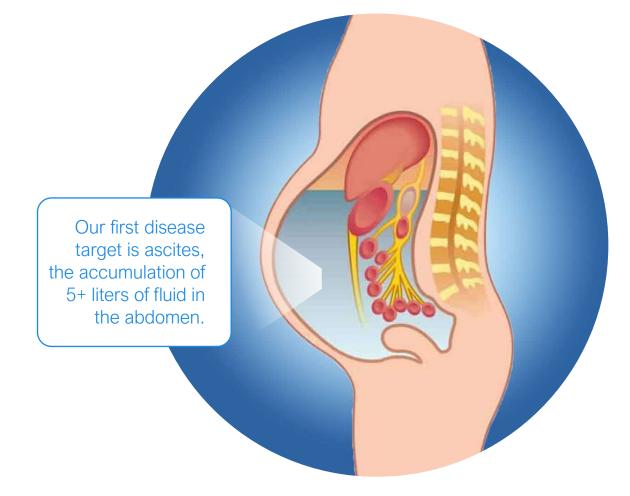
BIV201 Disease Target: Refractory Ascites

Refractory ascites patients typically undergo paracentesis to remove ascites fluid every week to 10 days

Paracentesis:

Withdrawal of 5–10L of ascites fluid (on average) from abdomen using a large bore needle

Provides a few days of symptomatic relief


The kidneys are "burning out" by retaining massive quantities of salt and water

Patients suffer frequent life-threatening complications

No remaining options except for TIPS¹ surgery or liver transplant

Estimated \$670 million addressable US market with 20,000² targeted patients

No drugs ever approved by FDA to treat ascites

^{1.} TIPS = transjugular intrahepatic portosystemic shunt to channel blood flow around the liver

^{2.} Derived from Scaglione *J Clin Gastroenterol.*49(8):690-6; D'Amico *Journal of Hepatology*, Volume 44, pp. 217-231; D'Amico *Aliment Pharmacol Ther.* 39(10):1180-93; Samonakis *World Journal of Hepatology*, 6(7), pp. 504-512; Sivanathan *Dtsch Med Wochenschr*, Volume 139, pp. 1758-1762 and Gines *New England Journal of Medicine*. 350(16), pp. 1646-1654.

Prefilled Syringe with Patent-pending Liquid Formulation

Accurate dosing

Eliminates mixing minute quantities of powder terlipressin that could result in medication errors or sterility loss

Enhanced convenience

Simply inject fluid into the saline bag and attach to pump

BIV201 Development Plans

Ascites

- 9 trial sites are activated and screening/enrolling patients
- 20 ascites patients to receive BIV201 therapy + standard of care (SOC); 10 to receive SOC only (control group)
 - Co-primary endpoints: Incidence of ascites-related complications over 180 days following randomization and change in ascites fluid removed over 90 days
- Timeframe: Two 28-day cycles of BIV201 therapy within 4 months, then follow patients for additional 60 days
- Similar trial design planned for a single pivotal Phase 3 planned in 2023 with ~120 subjects

HRS-AKI

- Planning a possible registrational Phase 3 trial in HRS-AKI*
 - For better outcomes because earlier treatment is possible than for HRS Type 1
 - For improved safety with continuous infusion dosing compared to Mallinckrodt's CONFIRM study of terlipressin in HRS type 1
- Mallinckrodt used bolus injections (1 or 2 mg given over approx. 5 min)
 - They achieved the efficacy objective but received two CRLs to date. NDA recently resubmitted¹
- Agreement reached with FDA on key elements of Phase 3 trial design
 - We plan to use same Pl's, same sites, and same drug product as our current ascites study
 - Orphan drug designation for HRS (in addition to ascites)

Leadership Team

Deep expertise provides a strong foundation for success

Cuong Do, President & Chief Executive Officer 30+ years in biopharma & technology President, Samsung Global Strategy Group Chief Strategy Officer for Merck Senior partner at McKinsey & Company

Joseph Palumbo, MD, Chief Medical Officer
30+ years treating patients; 25+ years in biopharma
CMO, Zynerba
Global Head of Medical Science & Translational Research, Global
Head & Psychiatry Franchise Medical Leader, J&J

Penelope Markham, Liver Cirrhosis Program
25 years in biopharma drug development
Lead Scientist Terlipressin (LATPharma/ BioVie 11 years)
Head Research Biology Protez Pharma
Co-founder/Director of Research Influx Inc.

Sarah Hoit, Chief Social Impact Officer
30+ years in Social Impact, healthcare and technology
CEO & Co-Founder for Connected Living, Inc
CEO & Founder for Explore, Inc
Deputy Director of AmeriCorps in White House

Chris Reading, PhD, Neurodegenerative Disease Program 40+ years in biopharma
Chief Scientific Officer, Hollis-Eden Pharmaceuticals
VP of Product and Process Dev. for Systemix
U Texas Dept. of Tumor Biology

Clarence Ahlem, Neurodegenerative Disease Program
35+ years in biopharma
Vice President, Product Development Harbor Therapeutics
Director, Product Development, Hollis-Eden Pharmaceuticals
US San Diego

J. Wendy Kim, Chief Financial Officer
35 years in finance/ accounting
As CFO managed corporate finance and operations groups
Closed M&A transactions and secured financings
Combined 22 years at KPMG and BDO LLP

biovie

Thank You

Portfolio Revenue Potential

		Company Estimates ²		
	U.S. Intellectual Property	US Patient Population	US Peak Sales Potential	Global Sales Potential
NE3107: Alzheimer's	Compound patent through 2031 ¹	6.1 million	\$7 billion	>\$10 billion
NE3107: Parkinson's	Compound patent through 2031 ¹	1.0 million	\$1.5 billion	>\$3 billion
BIV201: Refractory Ascites	Orphan Drug; Patent- pending formulation; Patent issued method of use	20,000	\$450 million	>\$900 million

Prior NE3107 Clinical Studies

Phase 1¹

Obese, impaired glucose tolerant healthy volunteers

NE3107:

- Improved insulin-stimulated glucose disposal, assessed by hyperinsulinemic, euglycemic glucose clamp procedures
- Decreased C-reactive protein (CRP²) and increased HDL and adiponectin (both associated with benefit in AD)
- Showed no differences in AEs compared to placebo

Phase 2³

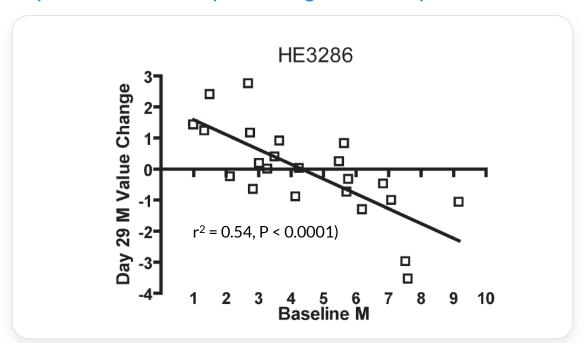
biovie

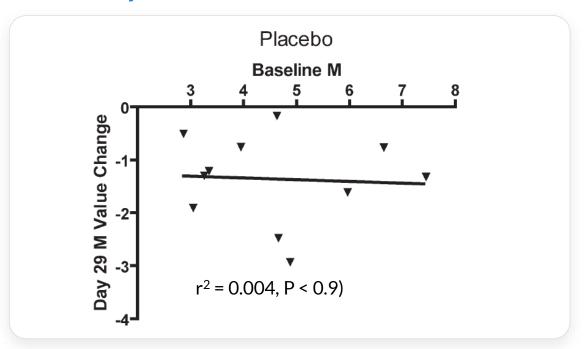
Obese and inflamed type 2 diabetes subjects

NE3107:

- Decreased insulin resistance, postprandial glucose and HbA1c compared to placebo
- Decreased inflammation-driven systems dysregulation of inflammatory, hematopoietic and metabolic parameters compared to placebo⁴
- Showed no differences in AEs compared to placebo

Reading Mediators Inflamm 2013 814989

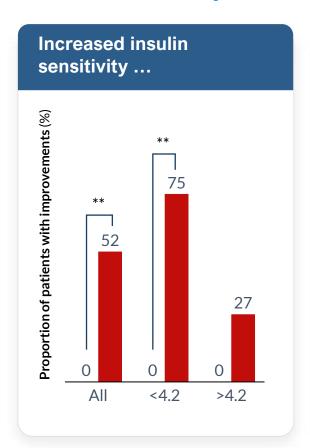

^{2.} CRP is a nonspecific marker of inflammation that is increased in the brain and serum of patients with Alzheimer's disease (AD), and has been associated with increased risk of developing dementia

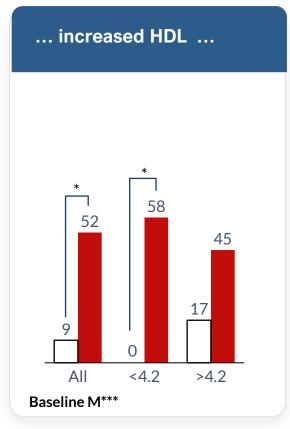

Reading 2013 Obesity 21 E343

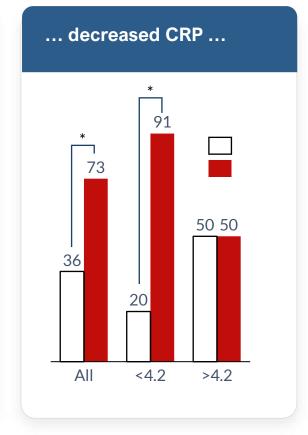
Systems dysregulation in diabetes has been shown to increase risk for AD, and similar systems dysregulation of laboratory and clinical parameters is correlated with AD progression.

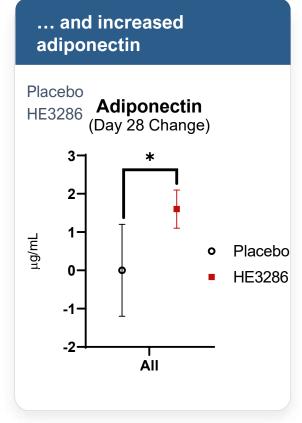
NE3107's ability to enhance insulin sensitivity reproduced in humans in Phase 1 trial with impaired glucose tolerance patients

Improved insulin-dependent glucose disposal in 48 obese, inflamed subjects

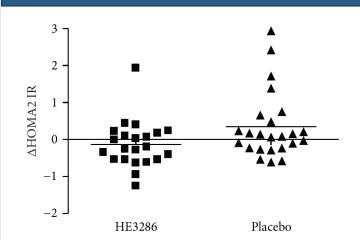


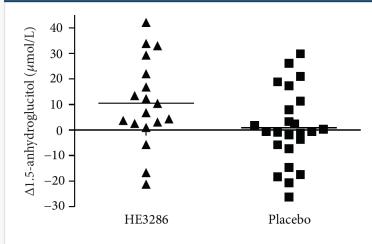



Day 29 Glucose disposal rate (M, measured in mg/kg/min in glucose clamp studies) value change as a function of baseline M


Insulin sensitizing improvement also brought improvements in AD indicators

In a Phase 1 study 48 obese subjects with impaired glucose tolerance, NE3107 ...




NE3107's ability to enhance insulin sensitivity reproduced in humans in Phase 2 trial with T2D patients

Improved the homeostatic model assessment of insulin resistance ...

Cohort 1 baseline MCP-1 > 40 pmol/L individual subject changes in homeostatic model assessment of insulin resistance at Day 84

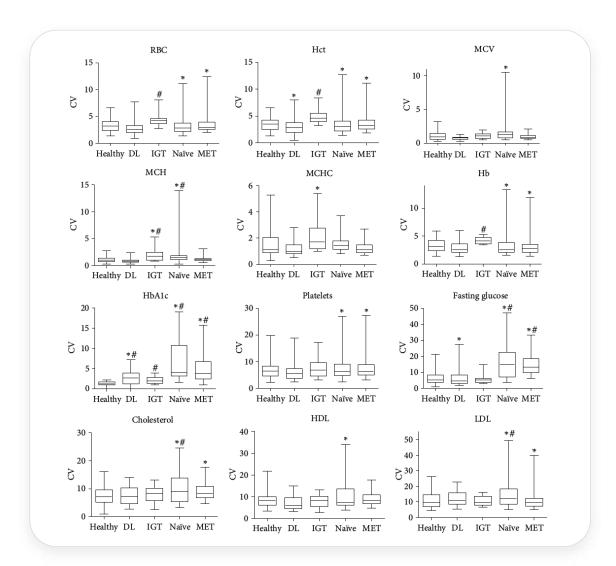
... decreased postprandial glucose ...

Pooled cohorts 1 and 2 changes at Day 84

Day 112 cohort 2 baseline BMI > 31 kg/m²

... decreased insulin resistance in inflamed T2D patients

Effect	Value	Change		D	Test ^g
	74440	HE3286	Placebo	r	2000
ΔHOMA2 IR ^c	Day 84 mean	-0.1	+0.4	0.02	t-test


Inflammation drives systems dysregulation

- Patients with increasing metabolic disease show greater variability for individual hematology, metabolic and chemistry values
- Indicates increasing dysregulation

DL: dyslipidemic placebo group, IGT: impaired glucose tolerant placebo group, Naïve: treatment-naïve uncontrolled T2DM placebo group, MET: uncontrolled T2DM placebo group on a stable dose of metformin

Hb: hemoglobin, Hct: hematocrit, RBC: red blood cell count, MCV: mean cell volume, MCH: mean corpuscular hemoglobin, MCHC: mean corpuscular hemoglobin concentration, HbA1c: hemoglobin A1c, HDL: high density lipoprotein cholesterol, LDL: low density lipoprotein cholesterol.

#Statistically Significant Welch ANOVA). *Statistically significant 2-sided FF test.

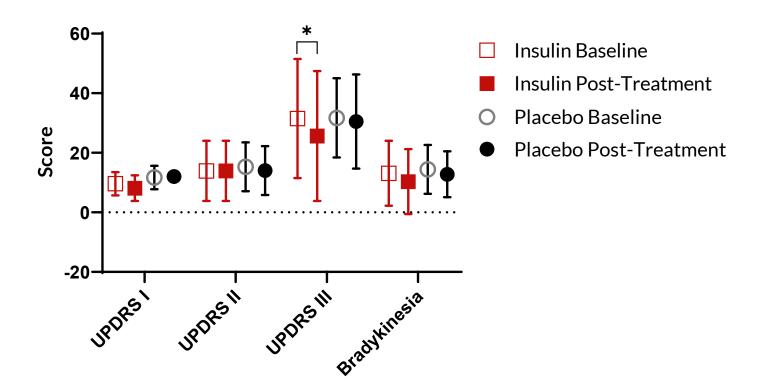
NE3107 decreased systems dysregulation in a Phase 2 study in advanced T2D patients

Heteroscedasticity* investigated by analyzing data distributions for normality (Shapiro-Wilks *W* test)

Deviations from normal distribution represents dysregulation

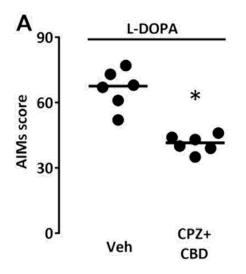
Placebo patients had significantly abnormal data distributions after 84 days of treatment whereas NE3107 subjects did not

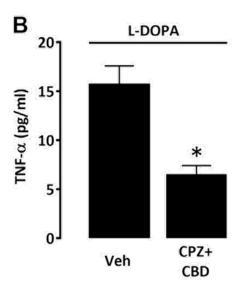
- Placebo patients had many parameters that significantly deviated from normal distribution (i.e., dysregulated)
- NE3107 treatment reduced systems dysregulation

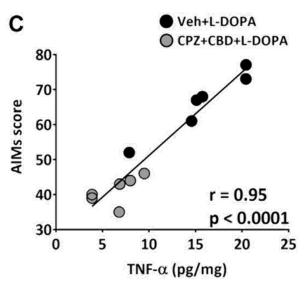

Group	Cohort 1	MCP-1 > 40 Cohort 2	BMI > 31	
HE3286	n=44	n=22	n=35	n=12
Placebo	n=51	n=25	n=34	n=15

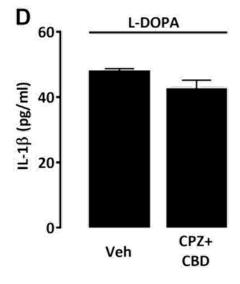
Croup	Day	Day Parameter	HE3286	Placebo
Group	Day	Parameter	W test P	W test I
	84	Δ Insulin ^d	>0.1	< 0.0001
		Δ C-peptide	>0.1	< 0.0001
Cohort 1		ΔFasting glucose	>0.1	0.02
00110111		ΔΗΟΜΑ2 %Β	>0.1	< 0.0001
		Δ HOMA2 IR	>0.1	0.002
		Δ leptin	>0.1	0.005
Cohort 1	84	ΔHbA1c	>0.1	0.006
MCP-1 > 40 ^b		∆Fasting glucose	>0.1	0.02
MCF-1 > 40		ΔΗΟΜΑ2 %Β	>0.1	< 0.0001
	84	ΔnHbA1c	>0.1	0.04
		Δ Insulin	>0.1	>0.1
		∆Fasting glucose	>0.1	0.03
		ΔΗΟΜΑ2 %Β	>0.1	>0.1
Cohort 2		ΔMCP-1	>0.1	0.005
		ΔTriglycerides	>0.1	< 0.0001
	112	ΔnHbA1c	>0.1	0.0007
		Δ Insulin	>0.1	>0.1
		Δ Fructosamine	>0.1	0.002
		ΔΗΟΜΑ2 %Β	>0.1	< 0.000
Cohort 2 BMI > 31 ^c	84	ΔΗΟΜΑ2 %Β	>0.1	0.007
		Δ MCP-1	>0.1	>0.1
		ΔTriglycerides	>0.1	>0.1
	112	Δ Insulin	>0.1	< 0.0001
		ΔC-peptide	>0.1	< 0.0001
		ΔΗΟΜΑ2 %Β	>0.1	< 0.0001
		ΔHOMA2 IR	>0.1	< 0.0001

The Role of Reduced Insulin Signaling in Parkinson's Disease

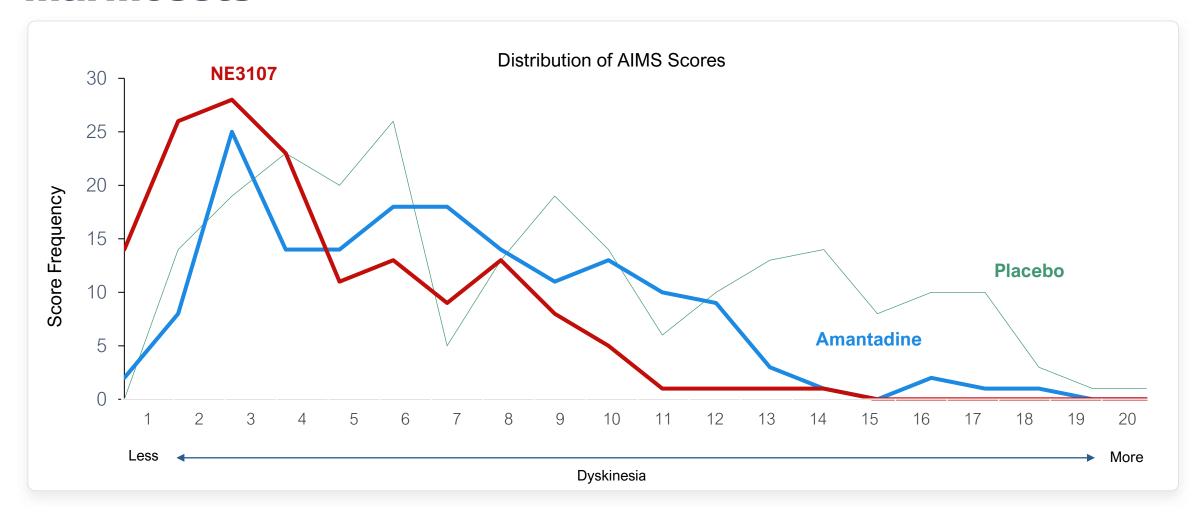

Stimulation of insulin signaling improves motor function in Parkinson's patients

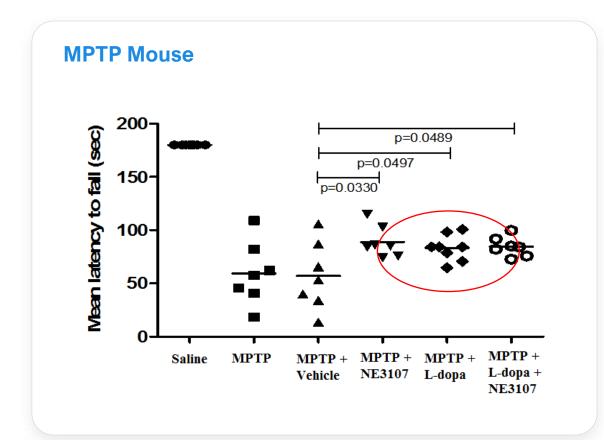

Intranasal Insulin Treatment Reduced Inflammation and Improved Motor Activity

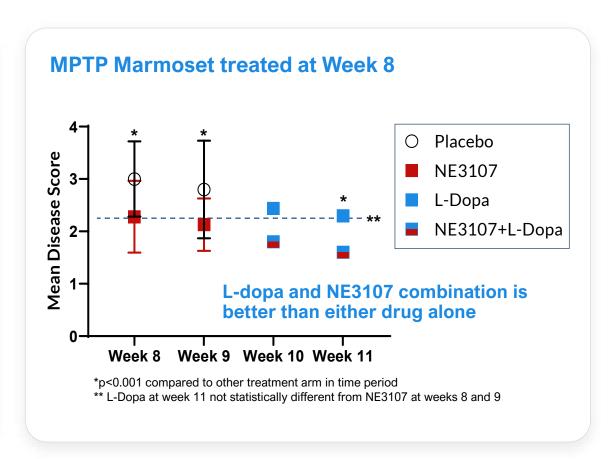



Inflammation's Role in LID

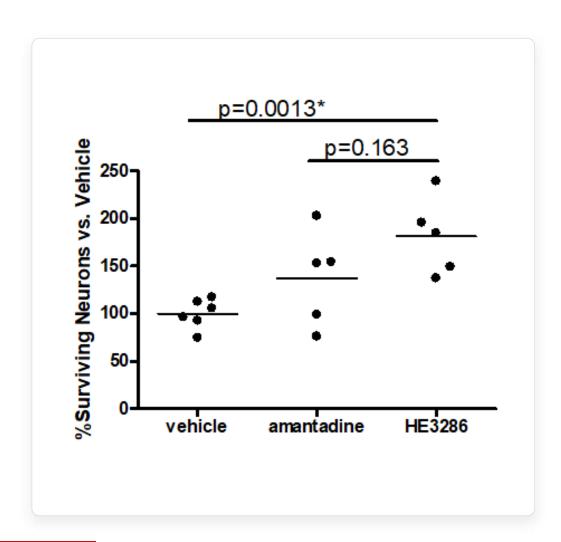
Reduction of TNF-induced inflammation reduces LID

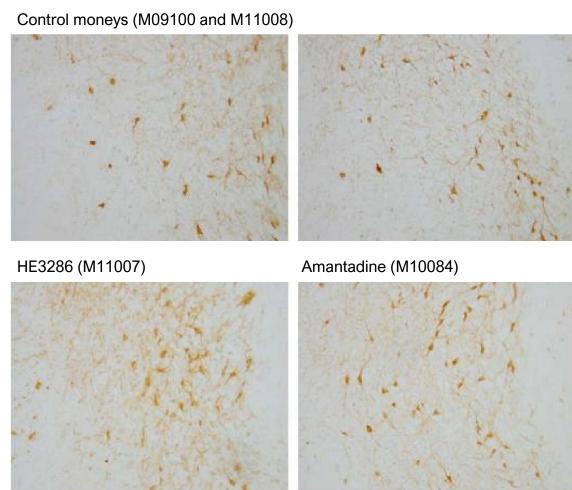






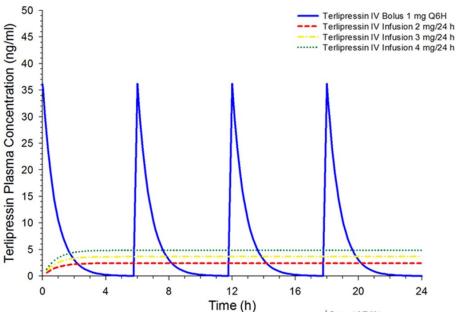
NE3107 decreases L-Dopa-induced dyskinesia (LID) in marmosets


NE3107 has similar promotoric activity to L-dopa in rodent and marmoset models

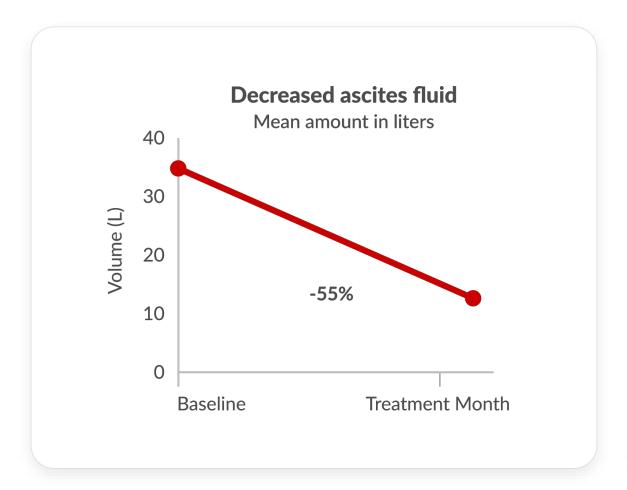


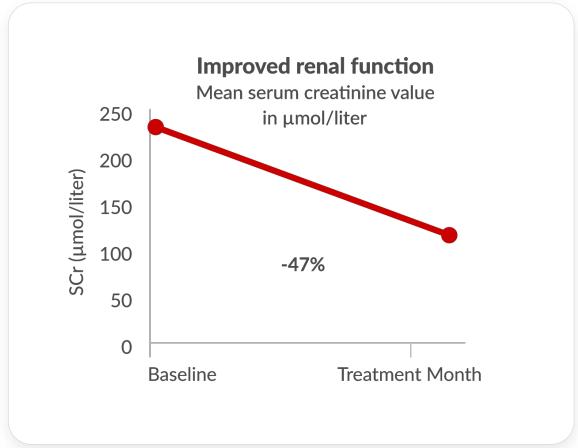
NE3107's promotoric effects observed within 4 days of treatment

NE3107 preserved TH+ neurons in MPTP marmosets



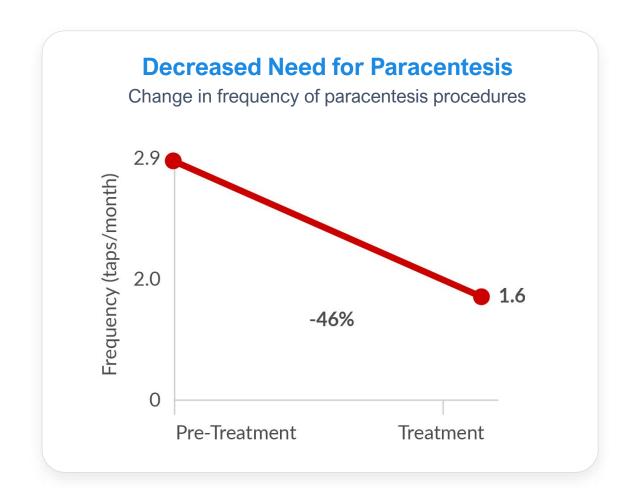
BioVie Phase 2a trial results: BIV201 Pharmacokinetics


Continuous low blood levels of terlipressin versus spikes with IV-bolus dosing


Comparison of the PK Profile of Terlipressin Administered by Continuous Infusion or Intermittent IV Boluses.

Simulated terlipressin plasma concentrations following IV bolus of 1 mg every 6 hours 1 [Lucassin, AusPAR-cer 2011] and IV continuous infusions of 2 mg, 3 mg, or 4 mg per day

Continuous Infusion Terlipressin in 6 Refractory Ascites/HRS Patients*


Continuous Infusion Terlipressin in 19 Refractory Ascites/HRS Patients

Pre-therapy:

- 70% of patients required weekly large volume paracentesis (LVP)
- 63% poor muscle strength

Results:

- Median duration of CI terlipressin treatment: 51 days
- 46% average reduction in frequency of paracentesis
- Significantly improved muscle strength and nutritional intake
- No complications directly attributable to terlipressin

