Metabolic Dysregulation in Probable Alzheimer's Disease

Christopher L. Reading¹, Clarence Ahlem¹, Joseph M. Palumbo¹, Marcia A. Testa², Donald C. Simonson³

¹BioVie Inc., Carson City, Nevada, USA; ²Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; ³Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Presented at the 2023 American Diabetes Association Meeting June 23 – 26, 2023 | San Diego, CA

Disclosures

Funded by BioVie Inc.

MAT has received grant support from BioVie Inc. CLR, CA, and JMP are employees of BioVie Inc. DCS has nothing to disclose.

1

Background

- Alzheimer's disease (AD) is a multifactorial disease¹, and several risk factors, such as obesity, chronic inflammation, insulin resistance (IR), oxidative stress, and dyslipidemia, may contribute to neurodegeneration, AD progression, and subsequent cognitive decline²
 - Obesity is associated with chronic low-grade inflammation¹ involving pro-inflammatory cytokines such as TNF-α,³ a key modulator of inflammatory responses⁴ that has been implicated in the development of IR² and oxidative stress^{2,5}
 - Anti–TNF-α therapies have been shown to reduce the risk of developing AD in patients with autoimmune disease⁴
- Given the integral role TNF-α plays in the pathophysiology of neurodegenerative disorders,⁶ bezisterim (NE3107), an investigative oral, antiinflammatory and insulin-sensitizing agent, is being evaluated for its ability to slow or prevent progression of MCI and AD⁷
 - Bezisterim's binds to the inflammatory mediator ERK and selectively inhibits inflammation-specific ERK, NF-κB, and TNF-α signaling,
 without affecting their homeostatic functions⁷
 - Bezisterim lowered pro-inflammatory mediators in rodent models of inflammation⁸ and improved insulin sensitivity in diabetic rats⁹
 - In obese patients with T2D and inflammation, bezisterim improved insulin sensitivity and normalized HbA1C⁷
- In a recent phase 2, open-label, single-arm, 3-month trial (NCT05227820), bezisterim treatment was associated with neurophysiological, neurocognitive, and neuropsychiatric improvements, significant reductions in CSF P-tau and P-tau:Aβ42 ratio, and trending improvements in the levels of plasma TNF-α and brain glutathione, a marker of oxidative stress,¹⁰ in patients with MCI or mild dementia (MMSE ≥20; n=18), and demonstrated a favorable safety profile
 - Significant correlations between changes from baseline in cognitive performance and brain glutathione levels, CSF P-tau, or CSF P-tau:Aβ42 ratio were observed in patients with mild to moderate dementia (N=23)
 - Improvement in ADAS-Cog11 scores significantly correlated with reduction in TNF- α in patients with MMSE \geq 20
- We are evaluating the efficacy, safety, and tolerability of bezisterim in a larger sample and over a longer duration, in a phase 3, randomized, placebo-controlled trial in approximately 400 patients aged 60-85 years with probable AD (NCT04669028)⁷

Aβ, amyloid beta; ADAS-Cog11, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale; CSF, cerebrospinal fluid; ERK, extracellular signal-regulated kinase; HbA1C, hemoglobin A1C; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; NF-κB, nuclear factor kappa B; P-tau, phosphorylated tau protein; T2D, type 2 diabetes; TNF-α, tumor necrosis factor alpha.

Study endpoints

Efficacy assessments:

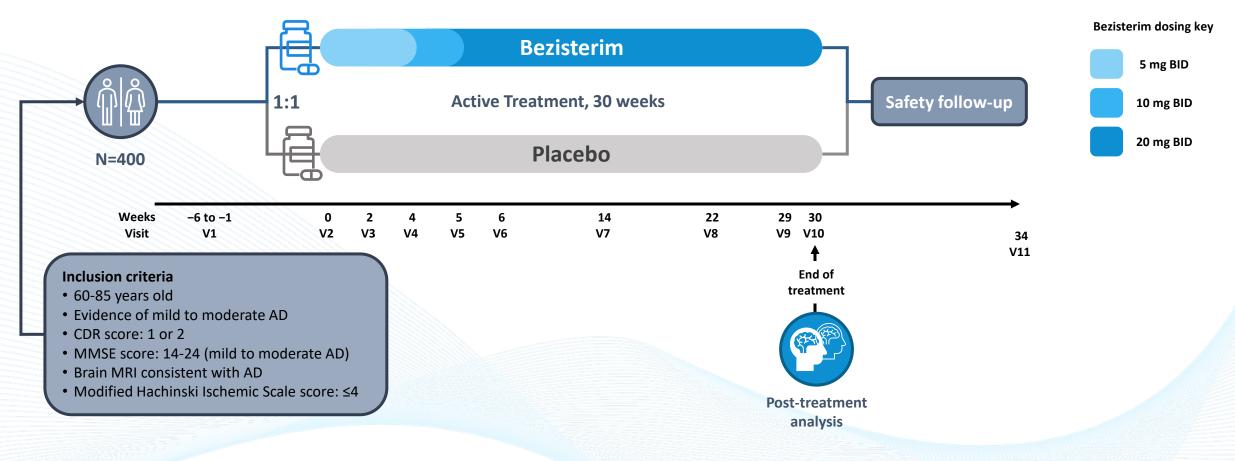
Primary endpoints – change from baseline to treatment completion (week 30)

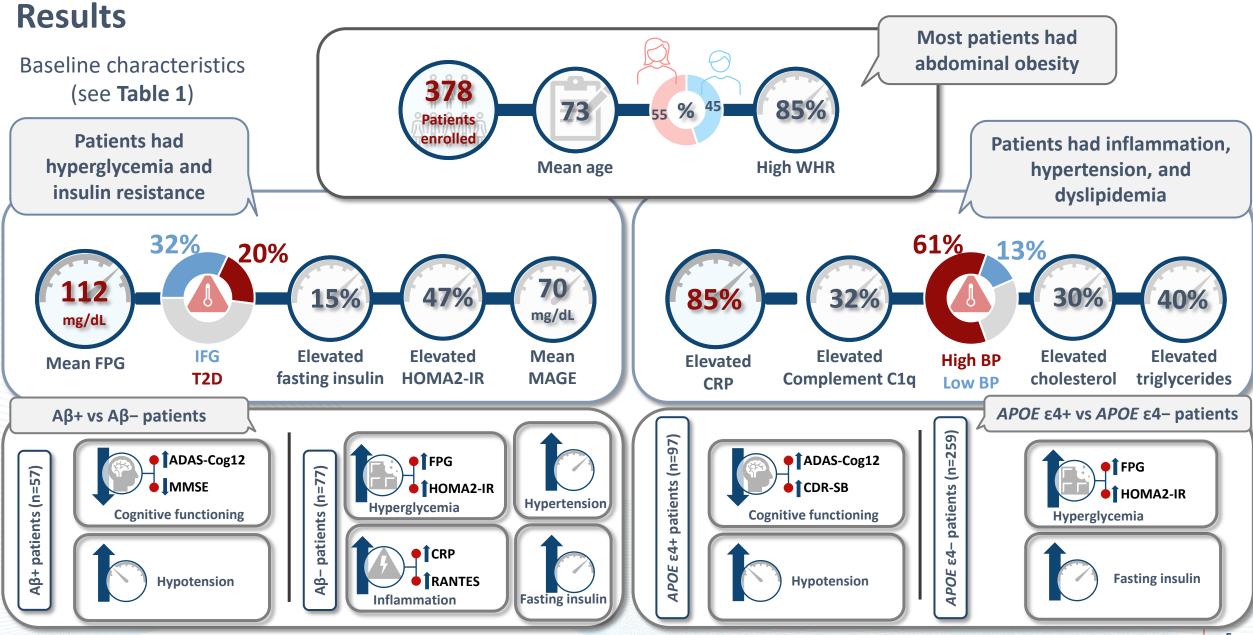
Cognitive impairment: CDR-SB

Secondary endpoints – change from baseline to treatment completion (week 30)

- Neurocognitive functioning: ADAS-Cog12, MMSE, ADCOMS, and CDR
- Global assessment of clinical change: ADCS-CGIC
- Neuropsychiatric health: NPI
- Functional outcome: ADCS-ADL
- Glycemic control: HOMA2-IR, MAGE, fasting blood glucose

Exploratory endpoints - change from baseline to treatment completion (week 30)


- Inflammatory and neurodegeneration biomarkers including CRP, IL-6, TNFα, and P-tau
- Neuroimaging: vMRI and FDG-PET
- Epigenetic aging clock: DNA methylation status
- Exit interviews


Safety and tolerability: Incidence and severity of TEAEs; vital signs; physical examinations; C-SSRS; 12-lead ECGs; clinical laboratory assessments (hematology, chemistry, and urinalysis)

ADAS-Cog12, 12-item cognitive subscale of the Alzheimer's Disease Assessment Scale; ADCOMS, Alzheimer's Disease Composite Score; ADCS-ADL, Alzheimer's Disease Cooperative Study—Activities of Daily Living; ADCS-CGIC, Alzheimer's Disease Cooperative Study—Clinical Global Impression of Change; CDR, Clinical Dementia Rating; CDR-SB, Clinical Dementia Rating—Sum of Boxes; CRP, C-reactive protein; C-SSRS, Columbia-Suicide Severity Rating Scale; ECG, electrocardiogram; FDG-PET, fluorodeoxyglucose—positron emission tomography; HOMA2-IR, The Homeostasis Model Assessment of insulin resistance; IL-6, interleukin 6; MAGE, Mean Amplitude of Glycemic Excursions; NPI, Neuropsychiatric Inventory; TEAE, treatment-emergent adverse event; vMRI, volumetric magnetic resonance imaging.

Study design

- This is a phase 3, double-blind, placebo-controlled, parallel group, multicenter 40-week study of bezisterim to evaluate the safety, tolerability, and efficacy of oral bezisterim administered twice daily (BID; approximately 12 hours apart) in patients with mild to moderate probable AD, compared with matching placebo
 - The dose of oral bezisterim was 5 mg BID during the first 2 weeks, 10 mg BID during week 4, and then 20 mg BID for the rest of the treatment period

BP, blood pressure; FPG, fasting plasma glucose; IFG, impaired fasting glucose; RANTES, regulated upon activation, normal T cell expressed and secreted; WHR, waist-to-hip ratio.

Table 1. Baseline characteristics

Characteristic	All N=378	Αβ+ª n=57	Αβ– ^ь n=77	Р	<i>APOE</i> ε4+ n=97	<i>APOE</i> ε4– n=259	Р
Age, mean (SE) y	73 (0.3)	76 (0.8)	72 (0.6)	**	73 (0.6)	73 (0.4)	-
Female, %	55	53	67	-	64	64	-
High WHR ^c , %	85	84	84	-	81	82	-
FPG, mean, mg/dL	112	100	112	*	106	115	*
IFG, %	32	18	35	#	25	36	
T2D, %	20	14	22	-	17	25	-
Fasting insulin, mean (SE), μlU/mL	16 (1.1)	10 (1.0)	15 (2.4)	*	12 (1.1)	17 (1.6)	*
High (>23), %	15	9	15	-	10	17	-
HOMA2-IR, mean (SE)	1.8 (0.1)	1.3 (0.2)	1.9 (0.2)	*	1.5 (0.1)	1.9 (0.1)	*
1.4-2.5, %	27	13	29	##	24	27	-
>2.5, %	20	15	21	-	15	22	-
MAGE, mean (SE), mg/dL	70 (2.5)	62 (3.4)	68 (4.6)	-	68 (4.2)	71 (3.1)	-
CRP, mean (SE), mg/L	4.1 (0.4)	1.8 (0.2)	6.3 (1.2)	**	3.6 (0.8)	4.3 (0.4)	
>3, %	67	13	28	#	20	32	
>10, %	18	0	18	##	4	21	-
C1q, mean (SE), mg/dL	22 (0.2)	21 (0.4)	44 (0.5)	-	21 (0.3)	22 (0.2)	-
High (>22), %	32	28	33	-	34	31	-
RANTES, mean (SE), pg/mL	28 (1.6)	23 (2.0)	33 (2.8)	**	26 (2.8)	29 (2.0)	-
Cholesterol, mean (SE), mg/dL High (>199), %	189 (4) 30	174 (5) 22	175 (5) 26	-	183 (4) 30	180 (3) 30	-
Triglycerides, mean (SE), mg/dL High (>149), %	143 (4) 40	130 (9) 27	143 (8) 36	-	132 (5) 36	148 (5) 41	-
High BP (>130/80), %	61	47	71	##	54	63	-
Low BP (<66 diastolic), %	13	12	2.5	##	15	4.1	##
CDR-SB, mean (SE)	6.3 (0.1)	6.6 (0.3)	6.2 (0.2)	-	6.6 (0.2)	6.1 (0.1)	**
MMSE, mean (SE)	20 (0.1)	20 (0.1)	21 (0.2)	**	20 (0.2)	20 (0.1)	-
ADAS-Cog12, mean (SE)	28 (0.4)	31 (1.4)	25 (0.7)	**	30 (0.9)	27 (0.5)	**
ADCS-ADL, mean (SE)	55 (0.6)	57 (1.4)	57 (1.2)	-	56 (1.0)	55 (0.5)	-
Aβ42/40 ratio, mean (SE)	0.095 (0.001)	0.085 (0.001)	0.107 (0.001)	**	0.089 (0.002)	0.098 (0.001)	**

^aPositive Precivity test; ^bNegative Precivity test; ^cFor females WHR>0.8 and for males WHR>0.95; Mann-Whitney *P <0.05, **P<0.01; Fisher's Exact Test #<0.05, ## <0.01.

Conclusions

- This is the largest study to date to evaluate the safety and efficacy of bezisterim in patients with AD; bezisterim is the only antiinflammatory agent currently in phase 3 development for AD¹¹
- At baseline, the majority of patients had a high WHR (85%), hypertension (61%), and impaired glucose metabolism (IFG/T2D; 52%); almost half of all patients (47%) had some degree of insulin resistance; 40% and 30% of patients had hypertriglyceridemia and hypercholesterolemia, respectively; and patients had elevated inflammatory markers
- Both Aβ+ and Aβ- patients with AD were enrolled in this study and had comparable CDR-SB scores indicative of mild dementia, but while Aβ+ patients had worse ADAS-Cog12 and MMSE scores, indicating lower cognitive functioning, Aβ- patients had significantly higher inflammation, insulin resistance, IFG, and hypertension, compared to their Aβ+ counterparts
- Additional subgroup analysis revealed higher degrees of impaired glucose metabolism and insulin resistance among the APOE ε4– patients compared to their APOE ε4+ counterparts and comparable baseline MMSE scores, indicating that both groups had mild to moderate cognitive impairment
- Thus, even in the absence of classical risk markers, such as Aβ+ and APOE ε4+, central obesity (high WHR) and age-related systems dysregulation, involving inflammation (elevated CRP, RANTES, and C1q), hyperglycemia, insulin resistance, dyslipidemia, and hypertension, may contribute to probable AD and disease progression
- Consistent with the proposed anti-inflammatory and insulin-sensitizing properties of bezisterim, this phase 3 study was designed to confirm the efficacy and safety of bezisterim treatment in patients with probable AD

References

- 1. Iqbal K, Grundke-Iqbal I. Alzheimer's disease, a multifactorial disorder seeking multitherapies. *Alzheimers Dement*. 2010;6(5):420-424.
- 2. Verdile G, Keane KN, Cruzat VF, et al. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer's disease. *Mediators Inflamm*. 2015;2015:105828. doi: 10.1155/2015/105828
- 3. Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V. Obesity as a risk factor for dementia and Alzheimer's disease: the role of leptin. *Int J Mol Sci*. 2022;23(9):5202. doi: 10.3390/ijms23095202
- **4**. Torres-Acosta N, O'Keefe JH, O'Keefe EL, Isaacson R, Small G. Therapeutic potential of TNF-α inhibition for Alzheimer's disease prevention. *J Alzheimers Dis*. 2020;78(2):619-626.
- 5. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. *Oxid Med Cell Longev*. 2015;2015:610813. doi: 10.1155/2015/610813
- 6. Jung YJ, Tweedie D, Scerba MT, Greig NH. Neuroinflammation as a factor of neurodegenerative disease: thalidomide analogs as treatments. *Front Cell Dev Biol*. 2019;7:313. doi: 10.3389/fcell.2019.00313
- 7. Reading CL, Ahlem CN, Murphy MF. NM101 phase III study of NE3107 in Alzheimer's disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. *Neurodegener Dis Manag*. 2021;11(4):289-298.
- 8. Auci D, Kaler L, Subramanian S, et al. A new orally bioavailable synthetic androstene inhibits collagen-induced arthritis in the mouse: androstene hormones as regulators of regulatory T cells. *Ann N Y Acad Sci*. 2007;1110:630-640.
- 9. Lu M, Patsouris D, Li P, et al. A new antidiabetic compound attenuates inflammation and insulin resistance in Zucker diabetic fatty rats. *Am J Physiol Endocrinol Metab*. 2010;298(5):E1036-E1048.
- **10.** Mandal PK, et al. Brain glutathione levels—a novel biomarker for mild cognitive impairment and Alzheimer's disease. *Biol Psychiatry*. 2015;78(10):702-710.
- 11. Cummings J, Lee G, Nahed P, et al. Alzheimer's disease drug development pipeline: 2022. Alzheimers Dement (N Y). 2022;8(1):e12295. doi: 10.1002/trc2.12295