Safety and Efficacy of Continuous Infusion Terlipressin (BIV201) in Patients With Decompensated Cirrhosis and Refractory Ascites: A Phase 2, Randomized, Controlled, Open-Label Study

Jasmohan S. Bajaj^{1,2}, Ethan M. Weinberg³, K. Rajender Reddy³, Andrew P. Keaveny⁴, Michael K. Porayko⁵, David Koch⁶, Paul J. Thuluvath^{7,8}, Douglas A. Simonetto⁹, Paolo Angeli¹⁰, Sujit V. Janardhan¹¹, Eric S. Orman¹², Sammy Saab¹³, Jeffrey Zhang^{14,15}, Susan Clausen¹⁵, Joseph Palumbo¹⁵, Penelope Markham¹⁵

¹Richmond VA Medical Center, Richmond, Virginia, USA; ²Virginia Commonwealth University of South Carolina, USA; ³University of Pennsylvania, USA; ³University of Pennsylvania, USA; ³University of South Carolina, USA; ⁴Mayo Clinic, Jacksonville, Florida, USA; ³University of South Carolina, USA; ⁴Mayo Clinic, Jacksonville, Florida, USA; ⁴Mayo Clinic, Jacksonville, Florida, USA; ⁴Mayo Clinic, Jacksonville, Florida, USA; ⁴Mayo Clinic, Jacksonville, Tennessee, USA; ⁴Mayo Clinic, Jacksonville, Florida, USA; ⁴Mayo Clinic, Jacksonville, Tennessee, USA; ⁴Mayo Clinic, Jacksonville, Florida, USA; ⁴Mayo Clinic, Ja Baltimore, Maryland USA; 9Mayo Clinic, Rochester, Minnesota, USA; 15BioVie Inc., Carson City, Nevada, USA USA; 14Princeton Pharmatech, Princeton Pharmatech, Princeton, New Jersey, USA; 15BioVie Inc., Carson City, Nevada, USA

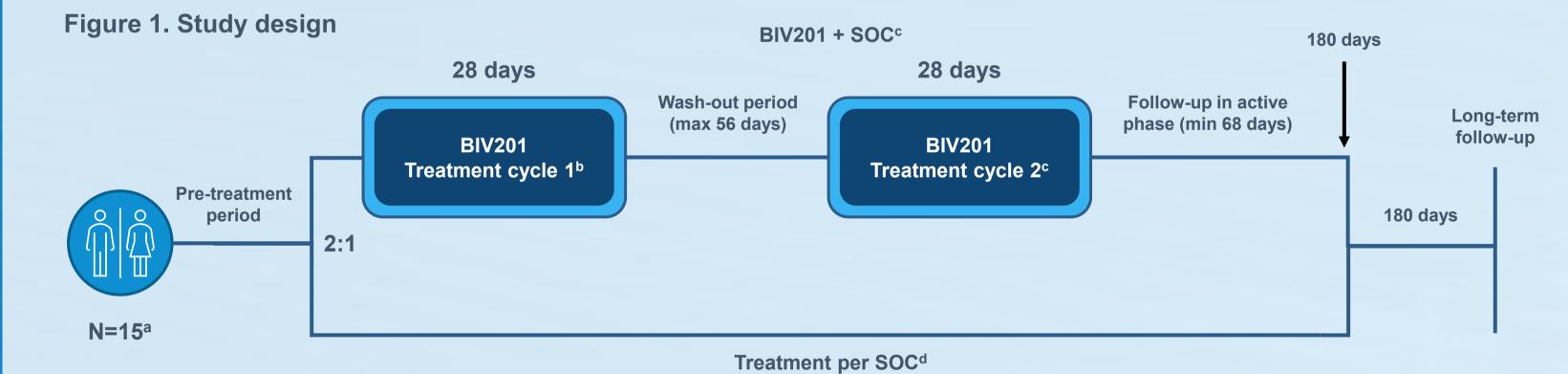
BACKGROUND

- Refractory ascites, ascites that cannot be controlled with an effective dose of diuretics, is a serious complication in patients with decompensated cirrhosis, resulting in a poor quality of life and abysmal survival rates¹⁻³
- Physical removal of ascites via therapeutic paracentesis (TP), a first-line SOC,⁴ provides temporary relief,⁵ lacks disease-modifying effects, and can lead to complications such as bleeding, infections, renal failure, circulatory dysfunction, and CV events^{6,7}
- There is no FDA-approved pharmacological therapy for refractory ascites and the SOC is inadequate, 1,2,5 hence there is an urgent medical need for a safe and effective treatment for this serious condition
- Terlipressin is an analog of vasopressin that suppresses RAAS activation, increases renal perfusion and excretion, partly via splanchnic vasoconstriction, and is currently in development to treat refractory ascites¹
- Terlipressin administered as an IV bolus injection is indicated for improvement of renal function in adults with HRS8; however, it has been associated with high rates of serious and treatment-emergent adverse events^{1,8,9} - Studies indicate that terlipressin administered as a continuous IV infusion (BIV201) may have a better safety and tolerability
- profile compared to the intermittent IV bolus dose approved for use in HRS¹⁰ • In a recent open-label, phase 2a trial in cirrhotic patients with refractory ascites, BIV201 was associated with improved control of refractory ascites during the 28-day treatment period, including decreased frequency of LVP and reductions in the volume of ascites
- removed by LVP¹ • An ongoing phase 2b, randomized, open-label study is investigating the safety, efficacy, and tolerability of BIV201 in patients with refractory ascites over a duration of 1 year

OBJECTIVES

- To evaluate the therapeutic efficacy of BIV201 continuous infusion on ascites recurrence and clinical complications of decompensated cirrhosis with refractory ascites during the active treatment period
- To assess long-term (180-day) effects on clinical outcomes in patients treated with BIV201 + SOC compared to those receiving SOC alone
- Here we report select efficacy outcomes from an interim data analysis of 15 patients enrolled; safety data will be reported at a later

METHODS


Study Design

• This was an open-label, phase 2b, dose-titration, controlled study in which adult patients with cirrhosis and refractory ascites were randomized 2:1 to receive either BIV201 during the intervention period consisting of two 28-day treatment periods separated by a wash-out interval, in addition to SOC, or SOC alone, followed by a follow-up period until 180 days post-randomization and a longterm follow-up period of 180 days (Figure 1)

Study Population

Key inclusion criteria

- Male or female patients age >18 years old
- Cirrhosis of the liver (NASH, alcohol, viral, and autoimmune)
- Diuretic-resistant or intractable ascites
- Required 3 to 9 TPs in the 6 months prior to consent

^aA total of 30 patients were planned to be enrolled; ^bBIV201 administered at 3 mg/day. Dose escalation to 4 mg/day if treatment well tolerated and no PD response. Dose reduction to minimum of 2 mg/day in case of safety concern; Same dose as cycle 1; SOC consisted of sustained diuretics and repeat TP per AASLD guidelines.

Assessments

Primary endpoints

- Change in cumulative ascites during the first 12 weeks after randomization vs 12 weeks prior to treatment
- Incidence of the following complications (Grade ≥2) during the 180 days following randomization - HRS-AKI
- Hepatic encephalopathy
- Gastrointestinal bleeding
- Post-paracentesis circulatory dysfunction
- Hyponatremia, acidosis, or hyperkalemia
- Safety and tolerability

Exploratory endpoints

- Number of TPs during the first 12 weeks after randomization vs 12 weeks prior to treatment
- Incidence of complications during the 84 days following randomization
- Changes in patient-reported dAST (tracks ascites-related symptoms)
- Renal function and severity of liver disease (measured by the MELD-Na score)
- Changes in PGI-C and CGI-C scores
- Changes in PGI-S and health status (measured by CLDQ and EQ-5D-5L)

- RESULTS
- Fifteen patients with cirrhosis and refractory ascites were enrolled, and their baseline characteristics are shown in Table 1 Patients were randomized 2:1 to receive BIV201 + SOC
- (n=10) or SOC alone (n=5) Both groups were mostly balanced, except patients in the BIV201 group were older, included females, had a higher MELD-Na, and had slightly lower monthly ascites accumulation and plasma renin activity, compared with patients in the SOC alone group
- 50% (n=5) of the 10 patients in the BIV201 group completed two 28-day infusion cycles (completers)
- The other 5 patients discontinued during or at the end of the treatment cycle 1 (non-completers)
- 80% (n=4) of the 5 patients in the SOC alone group completed

One patient withdrew consent upon randomization

- After 28 days of treatment, all 10 patients randomized to BIV201 + SOC (completers and non-completers) demonstrated a significant reduction in ascites accumulation compared with 28 days pre-treatment (mean reduction: 34%; P=0.004), with 50% (n=5) of these patients experiencing >40% reduction (**Table**
- In contrast, patients randomized to SOC alone demonstrated a mean increase of 3.4% in ascites accumulation (P=0.8), with no patients experiencing a >40% reduction

Table 1. Baseline characteristics

Characteristic	BIV201 + SOC (n=10)	SOC alone (n=5)
Age, y	63.1 [51-71]	57.8 [33-73]
Sex, n (%) Male Female	7 (70) 3 (30)	5 (100) 0 (0)
Ethnicity, n (%) White Black	8 (80) 2 (20)	5 (100) 0 (0)
CTP score	9.3 [7-12]	8.6 [7-10]
MELD-Na	16 [11-26]	14.4 [10-18]
SCr, mg/dL	1.02 [0.56-1.8]	1.2 [0.8-1.4]
Albumin, g/dL	3.33 [2.3-3.8]	3.16 [2.3-4.3]
Serum Na, mmol/L	135 [127-140]	136 [129-140]
INR	1.4 [1.0-1.9]	1.2 [1.0-1.5]
Bilirubin, mg/dL	1.58 [0.7-3.6]	1.42 [0.6-2.2]
Monthly ascites, L	16.3 [6.2-37.5]	18.9 [14.7-26.9]
Diuretics, n (%) Furosemide Spironolactone	8 (80) 6 (60)	4 (80) 3 (60)
PRA, ng/mL/hr	11.7	14.0

Efficacy

- After 12 weeks of treatment, patients who completed both treatment cycles of BIV201 + SOC (n=5; completers) experienced a reduction in ascites accumulation compared with 12 weeks pre-treatment (mean reduction: 43%; P=0.06), with 60% (n=3) of these patients demonstrating >40% reduction (**Table 2**)
- In comparison, patients randomized to SOC alone demonstrated a mean reduction of 12% in ascites accumulation (P=0.56)

Table 2. Change in ascites accumulation

Ascites accumulation ^a 4 wk post- vs 4 wk pre-treatment	BIV201 + SOC All patients (n=10)	BIV201 + SOC Completers (n=5)	BIV201 + SOC Non-completers (n=5)	SOC alone (n=5)
Mean, L	11.84 vs 16.36	5.4 vs 11	18.27 vs 21.65	19.18 vs 18.88
LS mean % change (90% CI)	-33.84 (-50.11, -7.56)	-53.11 (-73.2, -32.95)	-14.57 (-34.7, 5.59)	3.0 (-17.1, 23.22)
P value	0.004 ^b	0.001 ^{b,c}	0.257	0.806
Ascites accumulation ^a 12 wk post- vs 12 wk pre-treatment	BIV201 + SOC All patients (n=10)	BIV201 + SOC Completers (n=5)	BIV201 + SOC Non-completers (n=5)	SOC alone (n=5)
LS mean % change (90% CI)	-19.02 (-44.85, 6.82)	-42.9 (-77.4, -8.47)	4.91 (-29.57, 39.38)	-12.52 (-47.0, 21.95)
<i>P</i> value	0.247	0.063	0.818	0.561

- ^aTotal ascites volume removed by paracentesis during the period plus, if a paracentesis was not needed at the end of the period, a linear interpolated volume based on next TP; ^bBetween treatment groups, difference from SOC alone, *P*≤0.05; ^cBetween treatment groups, difference from BIV201 + SOC non-completers, *P*≤0.05.
- In the 12 weeks following randomization, patients who received BIV201 + SOC had a significant reduction in their monthly TP requirement, compared with 12 weeks pre-treatment (mean reduction was 30% [P=0.04] and 47% [P=0.02] for all patients and completers, respectively; **Table 3**)
- In comparison, patients who received SOC alone showed a mean reduction of 21% in monthly TP requirement (P=0.26)

Table 3. Change in monthly number of TPs

Monthly TPs 12 wk post- vs 12 wk pre-treatment	BIV201 + SOC All patients (n=10)	BIV201 + SOC Completers (n=5)	BIV201 + SOC Non-completers (n=5)	SOC alone (n=5)
Mean	1.53 vs 2.1	0.87 vs 1.53	2.2 vs 2.67	2.47 vs 3.37
LS mean % change (90% CI)	-29.85 (-51.23, -8.47)	-47.0 (-76.28, -17.72)	-12.7 (-41.98, 16.58)	-20.88 (-50.16, 8.4)
P value	0.039	0.021	0.489	0.263

- After 28 days of treatment, patients randomized to BIV201 + SOC demonstrated decreased SCr levels (mean reduction of 0.14 mg/dL [P=0.006] and 0.16 mg/dL [P=0.019] for all patients and completers, respectively) and lower plasma renin activity (mean reduction of 43% [P=0.057] and 61% [P=0.048], respectively), compared with baseline (**Table 4**)
- In comparison, patients who received SOC alone showed a mean reduction of 0.06 mg/dL [P=0.315] in SCr levels and a mean increase of 29% [P=0.43] in plasma renin activity

Table 4. Changes in pharmacodynamic measures of ascites

Parameter	BIV201 + SOC All patients (n=10)	BIV201 + SOC Completers (n=5)	BIV201 + SOC Non-completers (n=5)	SOC alone (n=5)
SCr, mg/dL Day 28 vs baseline LS Mean change (90% CI) P value	-0.14 (-0.21, -0.07)	-0.16 (-0.26, -0.06)	-0.11 (-0.21, -0.01)	-0.06 (-0.16, 0.04)
	0.006	0.019	0.096	0.315
PRA Day 28 vs baseline LS Mean % change (90% CI) P value	-42.6 (-75.23, -10)	-60.66 (-104.3, -16.99)	-20.0 (-68.88, 28.78)	28.39 (-27.9, 84.77)
	0.057	0.048	0.51	0.43

- Patients randomized to BIV201 + SOC showed significant improvements in several HRQoL-related exploratory endpoints (**Table 5**)
- CLDQ score (day 28 vs baseline): mean increase of 0.75 points (P=0.009) and 0.44 points (P=0.191) in the BIV201 + SOC group (n=10) and the SOC alone group (n=5), respectively
- CLDQ (abdominal domain) score (day 28 vs baseline): mean increase of 1.52 points (P=0.007) and 0.33 points (P=0.621) in the BIV201 + SOC group and the SOC alone group, respectively
- Change in daily ascites symptoms as measured by a novel PRO instrument in development (dAST, daily Ascites Symptoms Tracker) (4 weeks post- vs pre-treatment): mean reduction in dAST score of 37% (P<0.001) and 10.5% (P=0.382) in the BIV201 + SOC group and the SOC alone group, respectively
- Patients who completed both treatment cycles of BIV201 + SOC experienced a significant reduction in their daily average weight in the first 4 weeks of treatment compared with pre-treatment (mean reduction: 4.22 kg; P=0.008) (Table 5)
- In comparison, patients who received SOC alone demonstrated a mean reduction of 1.78 kg (P=0.157)
- Feedback available from 4 out of the 5 patients who completed both BIV201 + SOC treatment cycles indicated that all (4/4) patients would have remained on treatment had the protocol allowed it

Table 5. Changes in other treatment outcomes

Parameter	BIV201 + SOC All patients (n=10)	BIV201 + SOC Completers (n=5)	BIV201 + SOC Non-completers (n=5)	SOC alone (n=5)
CLDQ total score Day 28 vs baseline LS Mean % change (90% CI) P value	0.75 (0.36, 1.14)	1.13 (0.67, 1.59)	0.27 (-0.25, 0.78)	0.44 (-0.08, 0.96)
	0.009	0.002	0.414	0.191
CLDQ score (abdominal domain) Day 28 vs baseline LS Mean % change (90% CI) P value	1.52 (0.75, 2.28)	2.13 (1.17, 3.1)	0.75 (-0.33, 1.83)	0.33 (-0.74, 1.41)
	0.007	0.004	0.278	0.621
Daily dAST score ^a 4 weeks post vs pre-treatment LS Mean % change (90% CI) P value	-37 (-50.93, -23.15)	-44.06 (-65.32, -22.81)	-31.24 (-50.4, -12.41)	-10.52 (-29.58, 8.49)
	<0.001	0.006	0.020	0.382
CGI-C Day 28 LS Mean (90% CI)	3.78 (3.22, 4.34)	4.2 (3.48, 4.92)	3.25 (2.45, 4.05)	3 (2.2, 3.8)
Daily weight ^a , kg 4 weeks post vs pre-treatment LS Mean change (90% CI) P value	-2.13 (-3.77, -0.5)	-4.22 (-6.37, -2.07)	-0.47 (-2.39, 1.46)	-1.78 (-3.7, 0.15)
	0.053	0.008	0.698	0.157

Safety

• Overall, BIV201 was well tolerated with one SAE (asymptomatic hyponatremia) considered related to study drug and no unexpected serious adverse reactions in the >380 days of outpatient BIV201 infusion

CONCLUSIONS

- In this phase 2b, randomized, open-label, controlled study, BIV201 + SOC was associated with the following treatment benefits, compared with those seen with SOC alone:
- Decreased ascites accumulation during 4 and 12 weeks of treatment vs 4 and 12 weeks prior to treatment, respectively - Reduction in the number of monthly TPs required over 12 weeks of treatment vs 12 weeks prior to treatment
- Improvement in the pharmacodynamic measures underlying the pathophysiology of ascites after 4 weeks of treatment
- Improvement in the HRQoL-related assessments, particularly in the abdominal domain of the CLDQ, after 4 weeks of treatment
- Reduction in the average daily weight during 4 weeks of treatment compared with 4 weeks before treatment
- Overall, BIV201 had an acceptable safety profile during >380 days of outpatient treatment
- These findings support further development and investigation of continuous infusion of terlipressin (BIV201) in confirmatory trials for the treatment of refractory ascites in patients with decompensated cirrhosis

REFERENCES

- 1. Bajaj, JS, Fischer, JH, Yeramian, P, Gavis, EA, Fagan, A, Angeli, P, et al. Safety, tolerability, pharmacokinetics, and efficacy of terlipressin delivered by continuous intravenous infusion in patients with cirrhosis and refractory ascites. GastroHep. 2022;2022;5065478. doi:10.1155/2022/5065478
- 2. Will V, Rodrigues SG, Berzigotti A. Current treatment options of refractory ascites in liver cirrhosis A systematic review and meta-analysis. Dig Liver Dis. 2022;54(8):1007-1014
- 3. Macken L, Mason L, Gage H, et al. Long-term palliative abdominal drains vs large-volume paracentesis in cirrhosis-related refractory ascites: multi-centre feasibility RCT (REDUCE). Gut.
- 4. Rudler M, Mallet M, Sultanik P, Bouzbib C, Thabut D. Optimal management of ascites. Liver Int. 2020;40 Suppl 1:128-135. doi:10.1111/liv.14361 5. Ascites treatment. alfapump. Accessed May 22, 2023. https://www.alfapump.com/ascites/ascites-treatments/
- 6. Efe C, Purnak T, Ozaslan E, Ureyen C. Unexpected complications of therapeutic ascitic paracentesis: acute cardiovascular events. Eur J Gastroenterol Hepatol. 2010;22(8):1024.
- 7. Lindsay AJ, Burton J, Ray CE Jr. Paracentesis-induced circulatory dysfunction: a primer for the interventional radiologist. Semin Intervent Radiol. 2014;31(3):276-278.
- 8. TERLIVAZ® (terlipressin). Prescribing Information. Bedminster, NJ: Mallinckrodt Hospital Products Inc.

9. Wong F, Pappas SC, Curry MP, et al. Terlipressin plus albumin for the treatment of type 1 hepatorenal syndrome. N Engl J Med. 2021;384(9):818-828 10.Cavallin M, Piano S, Romano A, et al. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: A randomized

controlled study. *Hepatology*. 2016;63(3):983-992.

ACKNOWLEDGMENTS

p-value communications provided editorial support. Funded by BioVie Inc.

DISCLOSURES

JB has received grants from Bausch, Sequana, Cosmo, BioVie Inc., Mallinckrodt Pharmaceuticals and Grifols. EW is a consultant for Mallinckrodt Pharmaceuticals, BioVie Inc., and PharmalN. KRR is a consultant for Mallinckrodt Pharmaceuticals, Novo Nordisk, Spark Therapeutics, and BioVie Inc.; his employer, University of Pennsylvania has received grants from Mallinckrodt Pharmaceuticals, BristolMyers Squibb, Sequana, Grifols, Exact Sciences, Intercept, HCC-TARGET, and NASH-TARGET; he is on the Data and Safety Monitoring Board for Novartis. AK has received grants from BioVie Inc. and HepQuant LLC. MP is a consultant for BioVie Inc. and PharmalN. DK and SJ have nothing to disclose. PT is a consultant and sponsored lecturer for Mallinckrodt Pharmaceuticals and has received grants from BioVie Inc. DAS is a consultant for Mallinckrodt Pharmaceuticals and BioVie inc. PA is a lecturer for Behring, Grifols, Kedrion; he has patents with BioVie Inc.; He has participated in advisory boards for BioVie Inc., Biomarin, and GenFit. **EO** has participated in advisory boards for BioVie Inc. \$\$ is a consultant for BioVie Inc., Gilead, Eisai, Elexisis, and Mallinckrodt Pharmaceuticals; he is a sponsored lecturer for Gilead, Eisai, Elexisis, Mallinckrodt Pharmaceuticals, AbbVie, and Salix. JZ is a consultant and stockholder with BioVie Inc. SC is a consultant with BioVie Inc. JP and PM are employees of BioVie Inc.

For more information, please contact Penelope Markham (PMarkham@BioViePharma.com)

Na, sodium; NASH, nonalcoholic steatohepatitis; PD, pharmacodynamics; PGI-C, Patient Global Impression of Severity; PI, principal investigator; PRA, plasma renin activity; PRO, patient Global Impression of Severity; PI, principal investigator; PRA, plasma renin activity; PRO, patient Global Impression of Severity; PI, principal investigator; PRA, plasma renin activity; PRO, patient Global Impression of Change; PGI-S, Patient Global Impression of Severity; PI, principal investigator; PRA, plasma renin activity; PRO, patient Global Impression of Change; PGI-S, PGI-S,