
¹BioVie Inc., Carson City, Nevada, USA; ²Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; ³Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;

magnetic resonance imaging; WHR, waist-to-hip ratio.

A\$, amyloid beta; ADAS-Cog11, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale; ADCS-ADL, Alzheimer's Disease Cooperative Study—Clinical Dementia Rating; CDR-SB, Clinical Study—Clinical Global Impression of Change; BID, twice per day; BP, blood pressure; CDR, Clinical Dementia Rating; CDR-SB, Clinical Dementia Rating; CDR-FDG-PET, fluorodeoxyglucose-positron emission tomography; FPG, fasting plasma glucose; HOMA2-IR, the Homeostasis Model Assessment of insulin resistance; FG, interleukin 6; MAGE, Mean Amplitude of Glycemic Excursions; MMSE, Mini-Mental State Examination; MRI, magnetic resonance imaging; NPI, Neuropsychiatric lnventory; P-tau, phosphorylated tau protein; QDRS, Quick Dementia Rating System; RANTES, regulated upon activation, normal T cell expressed and secreted; ROS, reactive oxygen species; T2D, type 2 diabetes; TEAE, treatment-emergent adverse event; TNF-α, tumor necrosis factor alpha; vMRI, volumetric

Metabolic Dysregulation in Probable Alzheimer's Disease

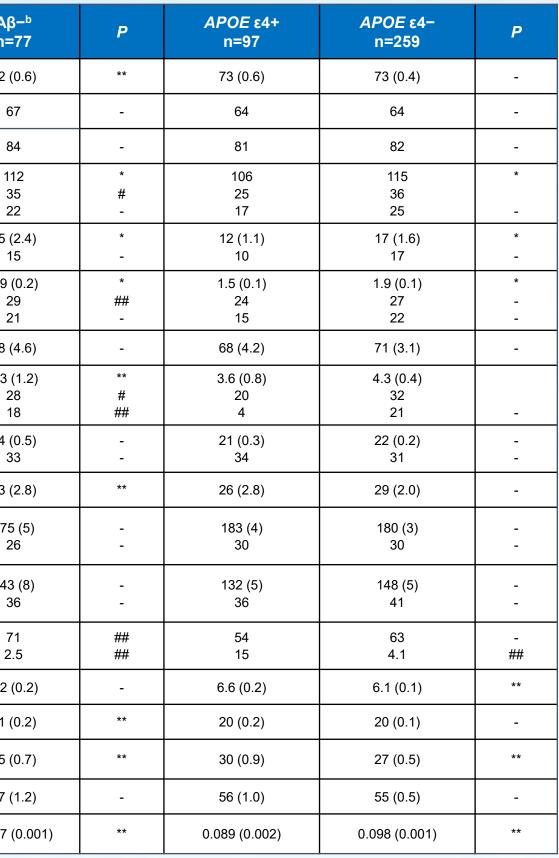
Christopher L. Reading¹, Clarence Ahlem¹, Joseph M. Palumbo¹, Marcia A. Testa², Donald C. Simonson³

s; CRI	P, C-reactive	e protein; C	C-SSRS,	Columbia-Suic	ide Severity	y Rating	Scale; (CT, co	mputed	tomography	; ECG,	electroca	ardiogram;
aon c	nocios: T2D	type 2 die	photos: TI	EAE troatmont	omorgont	advorco	ovont:	THE	tumor	nocrosis fac	tor alph	DO: WMPI	volumotri

Table 1.	Baseline	charact	eristics

Characteristic	All N=378	Αβ+ª n=57	A(n=
Age, mean (SE) y	73 (0.3)	76 (0.8)	72
Female, %	55	53	6
High WHR ^c , %	85	84	8
FPG, mean, mg/dL IFG, % T2D, %	112 32 20	100 18 14	1
Fasting insulin, mean (SE), µlU/mL High (>23), %	16 (1.1) 15	10 (1.0) 9	15
HOMA2-IR, mean (SE) 1.4-2.5, % >2.5, %	1.8 (0.1) 27 20	1.3 (0.2) 13 15	1.9
MAGE, mean (SE), mg/dL	70 (2.5)	62 (3.4)	68
CRP, mean (SE), mg/L >3, % >10, %	4.1 (0.4) 67 18	1.8 (0.2) 13 0	6.3
C1q, mean (SE), mg/dL High (>22), %	22 (0.2) 32	21 (0.4) 28	44
RANTES, mean (SE), pg/mL	28 (1.6)	23 (2.0)	33
Cholesterol, mean (SE), mg/dL High (>199), %	189 (4) 30	174 (5) 22	17:
Triglycerides, mean (SE), mg/dL High (>149), %	143 (4) 40	130 (9) 27	14:
High BP (>130/80), % Low BP (<66 diastolic), %	61 13	47 12	2
CDR-SB, mean (SE)	6.3 (0.1)	6.6 (0.3)	6.2
MMSE, mean (SE)	20 (0.1)	20 (0.1)	21
ADAS-Cog12, mean (SE)	28 (0.4)	31 (1.4)	25
ADCS-ADL, mean (SE)	55 (0.6)	57 (1.4)	57
Aβ42/40 ratio, mean (SE)	0.095 (0.001)	0.085 (0.001)	0.107

aPositive Precivity test; bNegative Precivity test; cFor females WHR>0.8 and for males WHR>0.95; Mann-Whitney *P <0.05, **P<0.01; Fisher's Exact Test #<0.05, ## <0.01


CONCLUSIONS

• To our knowledge, NE3107 is the only oral, anti-inflammatory agent currently in phase 3 development for AD⁶, and this is the largest study to date to evaluate its safety and efficacy in patients with AD

- Patients enrolled in this study had baseline characteristics consistent with metabolic syndrome - Most patients had a high WHR (85%), indicating abdominal obesity, hypertension (61%), and impaired glucose metabolism (IFG/T2D; 52%)
- Nearly half of all patients (47%) had some degree of insulin resistance
- Forty percent and 30% of patients had hypertriglyceridemia and hypercholesterolemia, respectively, indicating dyslipidemia - Almost all patients had elevated CRP (85%), indicating an elevated inflammatory status
- Both $A\beta$ + and $A\beta$ patients with AD were enrolled in this study and had comparable CDR-SB scores indicative of mild dementia, but while $A\beta$ + patients had worse ADAS-Cog12 and MMSE scores, indicating lower cognitive functioning, $A\beta$ - patients were younger and had significantly higher inflammation, insulin resistance, IFG, and hypertension, compared with their Aβ+ counterparts
- Patients who were APOE ε4- demonstrated higher degrees of impaired glucose metabolism and insulin resistance compared with their APOE ε 4+ counterparts; APOE ε 4- and APOE ε 4+ patients had comparable baseline MMSE scores, indicating that both groups exhibited mild to moderate cognitive impairment
- Our in-depth analysis of the patients enrolled in this phase 3 trial suggests that even in the absence of classical risk markers, such as $A\beta$ + and APOE ϵ 4+, central obesity and age-related systems dysregulation, involving inflammation (elevated CRP, RANTES, and C1q), hyperglycemia, insulin resistance, dyslipidemia, and hypertension, may contribute to the development and progression of AD and related dementias
- Consistent with the proposed anti-inflammatory and insulin-sensitizing properties of NE3107, this phase 3 study was designed to confirm the efficacy and safety of NE3107 treatment in patients with probable AD

REFERENCES

1. Iqbal K, Grundke-Iqbal I. Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement. 2010;6(5):420-424. 2. Verdile G, Keane KN, Cruzat VF, et al. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer's disease. Mediators Inflamm. 2015;2015:105828. doi:10.1155/2015/105828. 3. Reading CL, Ahlem CN, Murphy MF. NM101 phase III study of NE3107 in Alzheimer's disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. Neurodegener Dis Manag. 2021;11(4):289-298. 4. Haroon J, Mahdavi K, Jordan K, et al. Biomarker assessments from a phase 2, open-label study of NE3107 in patients with cognitive decline due to degenerative dementias. Poster presented at: Clinical Trials on Alzheimer's Disease (CTAD) Conference; November 29-December 2, 2022; San Francisco, CA. 5. Rindner E, Mahdavi K, Haroon J, et al. Clinical outcomes from a phase 2, open-label study of NE3107 in patients with cognitive decline due to degenerative dementias. Poster presented at: Clinical Trials on Alzheimer's Disease (CTAD) Conference; November 29-December 2, 2022; San Francisco, CA. 6. Cummings J, Lee G, Nahed P, et al. Alzheimer's disease drug development pipeline: 2022. Alzheimers Dement (NY). 2022;8(1):e12295. doi:10.1002/trc2.12295

ACKNOWLEDGEMENTS

p-value communications provided editorial support. Funded by BioVie Inc.

DISCLOSURES

Funded by BioVie Inc. MAT has received grant support from BioVie Inc. CLR, CA, and JMP are employees of BioVie Inc. **DCS** has nothing to disclose.

For more information, please contact Christopher Reading: CReading@BioViePharma.com