Bezisterim Effects on Biological Age, Alzheimer's Epigenetics, and Neurologic Assessments

Christopher Reading, PhD BioVie Inc. ARDD Copenhagen, 2024

In 2000, we asked

"Why does DHEA show

- anti-inflammatory
- insulin-sensitizing
- neuroprotective
- anti-aging effects

in mice, and not in humans?"

Thousands of publications

Bezisterim Developed by Understanding the Differential Metabolism of Androst-5-ene-3,17-diol Between Rats, Canines, Monkeys and Humans¹

Bezisterim

In vitro, in vivo and clinical findings align with expected pharmacology

- Binds extracellular-signal regulated kinase⁵, (ERK), and inhibits inflammatory^{6,7}, but not homeostatic⁸ ERK, NFκB and TNF signaling. It is more potent than βAET for inhibition of NFκB transcription
- These activities have been demonstrated in primary macrophages, and in monocyte/macrophage cell lines, as well as in vivo animal models
- Decreased inflammatory mediators and insulin resistance in animal models and human subjects with obese impaired glucose tolerance or T2D^{9,10}
- Improved motor activity and decreased neurodegeneration in Parkinson's disease models¹¹, and improved motor activity in a phase 2a PD study¹²
- Has a well-tolerated safety profile to date¹³
- Positive signals of clinical activity in dementia in AD clinical studies

5. Reading 2012 PLoS ONE 7 e32147; 6. Wang 2010 J Pharmacol Exp Ther 333 70; 7. Lu 2010 Am J Physiol Endocrinol Metab 298 E1036; 8. Lambert 2017 Front Neurosci 11 45; 9. Reading 2013 Obesity 21 E343; 10. Reading 2013 Mediators Inflamm 2013 814989; 11. Philippens 2023 Movement Disorders https://bioviepharma.com/publications/; 12. Ahlem 2023 ADPD https://bioviepharma.com/publications/; 12. Ahlem 2023 ADPD https://bioviepharma.com/publications/; 13. Reading 2024 ADPDDS https://bioviepharma.com/publications/

Positive Signals of Bezisterim Clinical Activity in Dementia

Open label 14-week study in MCI and Mild AD

- Improved neurological, neuroimaging, and dementia and inflammation biomarkers in an open-label 14-week study in MCI and mild AD¹⁴
- Observed 3.4-year decrease from baseline in biological age (Horvath SkinBlood Clock), and altered monocyte methylome¹⁵, but array batch effects confounded the interpretation

Placebo-controlled 30-week study in Mild/Mod AD^{16,17}

- Positive signals found in -
 - Neurological and biomarker measures in 50 per-protocol subjects (26 placebo and 24 bezisterim)
 - DNA methylation data for 33 subjects at completion (16 placebo and 17 bezisterim)

Focus of this presentation

14. Haroon 2024 Medicine 103 e39027; 15. Reading 2023 AAIC https://bioviepharma.com/publications/ ;16. Reading 2024 Submitted for publication; 17. Reading 2021 Neurodegener Dis Manag 11 289;

Bezisterim Subjects Showed a Lower Biological Age Than Placebo Subjects at 30 Weeks

Difference between biologic and chronological age (dAge) as calculated by different epigenetic aging clocks¹⁸⁻²² (SkinBlood Clock difference consistent with previous study¹⁵)

A consistent trend was observed when using age acceleration (similar to dAge but not confounded by chronological age) Note consistent placebo acceleration, Bezisterim deceleration

Raw data from Epigenetic Clock Development Foundation; Analyses of diverse epigenetic aging clocks performed by Chronomics/Hurdle Group, including their new InflammAge Clock²²

18. Horvath 2018 Aging 10 1758; 19. Levine 2018 Aging 2018 10 573; 20. Lu 2019 Aging. 2019 11 303; 21. Hannum 2013 Mol Cell 49 359; 22. Schmunk bioRxiv. 2023. doi.org/10.1101/2023.12.21.572866

Bezisterim Appeared to Modify Week 30 Monocyte Methylome

Consistent with hypothesis of a transition from pro- to anti-inflammatory

Cell Type	Placebo Pearson r, P	Bezisterim Pearson r, P	Fisher transformation Z test statistic, P
Monocytes	0.829, <0.0001	0.213, 0.413	2.51, <mark>0.012</mark>
Lymphocytes	0.958, <0.0001	0.946, <0.0001	0.334, 0.738
Granulocytes	0.974, <0.0001	0.923, <0.0001	1.44, 0.149

- Hematology and clock data are correlated for lymphocytes and granulocytes
- For pllacebo, but not bezisterim subjects, monocytes are not correlated
- Consistent with the previous open-label study result and hypothesis of a transition from proinflammatory (M1) to anti-inflammatory (M2) myeloid cells¹⁵

Analysis of Promoter Methylation

- Increased promoter methylation has been associated with decreased gene expression, however gene expression was not measured in this study
- Monocytes represent less than 10% of leukocytes; if significant promoter methylation differences were predominantly represented in monocytes²³, the magnitude of changes is much higher in monocytes.
- Significant (FDR p<0.05) differences in promoter CpG methylation β values (bezisterim placebo) identified were almost exclusively increased methylation by bezisterim

Bezisterim Increases in Promoter Methylation of Genes Associated with Disease Progression, Inflammation and Metabolic Regulation

- Compared to placebo, bezisterim subjects had significantly (FDR p<0.05) increased methylation in promoter CpGs of 4934 genes
- The top 50 genes (FDR p< 0.005) genes identified associations with disease progression for the following:
 - Cognitive decline, AD, PD and other CNS diseases
 - Inflammatory response, neurodegeneration, cell death
 - Obesity, insulin resistance, and T2D
 - Neurodegeneration biomarkers
 - Age acceleration
- Compared to placebo, bezisterim subjects had significantly (FDR p<0.05) decreased methylation in promoter CpGs in 21 genes
- We identified these 6 of the 21 genes were associated with the following **improved homeostasis**:
 - Autophagy, mitochondrial energy
 - Positive regulation of transcription
 - Repression of inflammatory gene expression, decreased ROS
 - Promotion of beta cell regeneration

Alzheimer's Disease Pathway Enrichment

Suggests Positive Impact by Bezisterim

- Genes with promoter methylation significantly increased (p<0.05) in bezisterim compared to placebo AD subjects were examined for enhancement of the KEGG Alzheimer's disease pathway
- There was a 1.6-fold enrichment (127 of 384 pathway genes)
- FDR *p*=6.2e⁻⁶
 - The red boxes represent proteins produced by genes with bezisterim-increased methylation (ie, decreased expression)
- There was no enrichment for genes with significantly decreased promoter methylation in bezisterim compared to placebo AD subjects

Key Genes in the AD Pathway for Promoter Methylation Increased in Bezisterim Compared to Placebo Subjects Activity may reduce gene expression

- ADAM10
 - α-Secretase, decreases Aβ
- APP
 - Decreases Aβ
- Bid
 - Apoptosis death domain agonist
- ATF6
 - ER stress response decreased in Alzheimer's disease
- CASP7
 - Caspase-cleaved **tau** catalyzes filament formation, adopts a conformation found in early-stage tangles, and can be hyperphosphorylated
- TNF
 - Pro-inflammatory cytokine, NFκB activation, decreases LTP

Inflammatory Gene Expression Decreased by Compounded Sequential Kinase Increased Promoter Methylation with Bezisterim vs Placebo

Signal ↓ ↓		HRAS +1: KRAS +1(MAP4K2	3%)% +4%	Cytokine BMP +11 MAP4K1 MAP4K2 MAP4K3	es, TGFβ +4% % +14% +4% +12%	TGFβ +4% Cytokines	Inflammation Amyloid β
MAP4K ↓ MAP3K	Phosphorylation	RAF1 +69 MAP3K1 MAP3K3 MAP3K8	% +10% +9% +8%	MAP3K1 MAP3K3 MAP3K5 MAP3K7 MAP3K9 MAP3K1 MAP3K13	+10% +9% +12% +5% +10% 1 +6% 3 +5%	MAP3K5 +12%	MAP3K1 +10% MAP3K2 +8% MAP3K8 +8% MAP3K9 +10% MAP3K14 +2%
↓ MAP2K		MAP2K2 +10%	MAP2K1 +8%	MAP2K4 + <mark>6%</mark>	MAP2K4 +6% MAP2K7 +12%	MAP2K3 <mark>+9%</mark> MAP2K6 + <mark>12%</mark>	
МАРК		ERK1 MAPK1 +10%	ERK2 MAPK3 <mark>+10%</mark>	JNK1 MAPK8 +7%	JNK2 MAPK9 +8%	p38α MAPK14 <mark>+3%</mark>	ΙκΒΚβ +8% ΙκΒΚγ +6% ΝΓκΒΙα +6% ΝΕκΒΙβ +9%
+ Transcription		RSK1/2/3 MSK1/2	3 +6% +5%	JUN +1 ATF +59 ELK +8	1% % %	MNK1/2 +3% MSK1/2 +5%	ΝΓκΒΙδ +9% ΝΓκΒΙε +1%
		ELK +8% SRF +4%		MEF2 +	7%	ATF +5% SMAD* +7%	NFκB2 +9%
	Transcription	FOSB +10	0%				
					TNF +4%		
Inflammatory					L6 +9%		
Targets					IL17 +5%	R	ed numbers are average DNA
<pre># > 1% change in a n</pre>	number of unrelated	transcription factors			IL17R +12%	n	nethylation β value % increase

Bezisterim KEGG Pathways Enrichment

Pathway	Fold Enrichment	FDR Adjusted P	Genes/pathway Genes
Alzheimer's disease	1.6	6.2e ⁻⁶	110/384
Amyotrophic lateral sclerosis	1.7	1.8e ⁻⁷	112/364
Neurodegeneration multiple diseases	1.6	1.7e ⁻⁶	134/476
Parkinson's disease	1.7	7.0e ⁻⁶	82/266
Huntington's disease	1.6	1.4e ⁻⁴	86/306
Cellular senescence	1.8	1.3e ⁻⁴	51/156
Apoptosis	1.8	2.5e ⁻⁴	45/136
Proteosome	2.3	1.8e ⁻³	19/46
TNF signaling	1.5	2.9e ⁻²	31/112
NF _K B signaling	1.6	3.4e ⁻²	29/104

Bezisterim Showed Improvements Over Time in Primary and Secondary Endpoints

Primary and secondary efficacy endpoints. Scores for bezisterim and placebo from baseline through week 30. Magnitude
of responses was comparable to results reported for approved medications lecanemab²⁴ and aducanumab²⁵

Directional Improvements From Baseline for Metabolic and Inflammatory Biomarkers with Bezisterim

There were non-significant directional improvements in fasting insulin, HOMA2 insulin resistance, triglycerides, fructosamine, adiponectin, leptin, systolic and diastolic blood pressure, and weight (data not shown) with bezisterim. There were no significant differences in pTau, GFAP, NfL or Aβ42/40 ratio.

	Diamanlaan	Plac	ebo	Bezisterim		
measure	Biomarker	Pearson R P<0.1		Pearson R P<0.1		
<mark>GST</mark>	GFAP	<mark>0.671</mark>	<mark>1.7e⁻⁴</mark>	0.253		
Global Statistical Test	pTau	<mark>0.444</mark>	0.023	0.174		
	Systolic BP	0.431	0.028	0.313		
	Cholesterol	-0.060		0.495	0.014	
	NfL	0.169		0.480	0.018	
	RANTES	0.165		-0.567	0.004	
	SBC dAge	0.209		0.473	0.055	
CDR-SB	GFAP	<mark>0.511</mark>	<mark>0.008</mark>	0.272		
Clinical Demential Rating	RANTES	0.398	0.044	-0.445	0.004	
	Systolic BP	0.435	0.026	0.388		
Cog12	GFAP	<mark>0.589</mark>	<mark>0.002</mark>	0.272		
ADAS-Cognition	<mark>pTau</mark>	<mark>0.410</mark>	<mark>0.037</mark>	0.133		
	Cholesterol	-0.082		0.550	0.005	
	NfL	0.083		0.458	0.024	
	RANTES	-0.033		-0.637	0.001	
	SBC dAge	0.167		0.455	0.067	
MMSE	Cholesterol	0.020		-0.468	0.021	
Mini-Mental State Exam	RANTES	0.003		0.516	0.010	
	SBC dAge	-0.011		-0.580	0.015	
CGIC	C1q	-0.395	0.046	0.294		
Clinician Global Impression of change	<mark>рТаи</mark>	<mark>0.414</mark>	<mark>0.036</mark>	0.208		
	SBC dAge	0.017		0.467	0.059	
ADL	CRP	<mark>-0.458</mark>	<mark>0.019</mark>	0.322		
Activities of Daily Living	Fructosamine	0.391	0.048	-0.459	0.024	
	HOMA2 %B	-0.395	0.046	-0.014		
	NfL	-0.039		-0.642	0.001	
ADCOMS	GFAP	<mark>0.497</mark>	<mark>0.010</mark>	0.294		
AD Composite Score	pTau 217	<mark>0.393</mark>	<mark>0.047</mark>	0.169		
	Systolic BP	0.525	0.006	0.370		
	NfL	0.120		0.454	0.026	
	RANTES	0.227		-0.575	0.003	
	SBC dAge	0.134		0.469	0.058	

- Changes from baseline in biomarkers in placebo, but not bezisterim subjects correlated with neurological assessment decline
 - For example, GFAP, pTau 217 and CRP
- Directions of improvement in scales
 - Increased MMSE and ADL = improvement
 - Decreased GST, CDR-SB, CGIC, & ADCOMS = improvement

Meeouvo	Diemerker	Plac	ebo	Bezisterim		
Measure	Biomarker	Pearson R	P<0.1	Pearson R	P<0.1	
<mark>GST</mark>	GFAP	0.671	1.7e ⁻⁴	0.253		
	pTau	0.444	0.023	0.174		
	Systolic BP	0.431	0.028	0.313		
	Cholesterol	-0.060		0.495	0.014	
	<mark>NfL</mark>	0.169		<mark>0.480</mark>	<mark>0.018</mark>	
	RANTES	0.165		-0.567	0.004	
	SBC dAge	0.209		0.473	0.055	
CDR-SB	GFAP	0.511	0.008	0.272		
	RANTES	0.398	0.044	-0.445	0.004	
	Systolic BP	0.435	0.026	0.388		
Cog12	GFAP	0.589	0.002	0.272		
	рТаи	0.410	0.037	0.133		
	Cholesterol	-0.082		0.550	0.005	
	NfL	0.083		<mark>0.458</mark>	<mark>0.024</mark>	
	RANTES	-0.033		-0.637	0.001	
	SBC dAge	0.167		0.455	0.067	
MMSE	Cholesterol	0.020		<mark>-0.468</mark>	<mark>0.021</mark>	
	RANTES	0.003		0.516	0.010	
	SBC dAge	-0.011		-0.580	0.015	
CGIC	C1q	-0.395	0.046	0.294		
	pTau	0.414	0.036	0.208		
	SBC dAge	0.017		0.467	0.059	
ADL	CRP	-0.458	0.019	0.322		
	Fructosamine	0.391	0.048	-0.459	0.024	
	HOMA2 %B	-0.395	0.046	-0.014		
	NfL	-0.039		<mark>-0.642</mark>	<mark>0.001</mark>	
ADCOMS	GFAP	0.497	0.010	0.294		
	pTau 217	0.393	0.047	0.169		
	Systolic BP	0.525	0.006	0.370		
	NfL	0.120		<mark>0.454</mark>	<mark>0.026</mark>	
	RANTES	0.227		-0.575	0.003	
	SBC dAge	0.134		0.469	0.058	

- Changes from baseline in biomarkers in bezisterim but not placebo subjects correlated with neurological assessment improvement
 - For example, decreases in neurofilament light chain (NfL) and cholesterol
- Directions of improvement in scales
- Increased MMSE and ADL = improvement
- Decreased GST, CDR-SB, CGIC, & ADCOMS = improvement

Meesure	Piomorkor	Plac	ebo	Bezisterim		
Measure	biomarker	Pearson R	P<0.1	Pearson R	P<0.1	
<mark>GST</mark>	GFAP	0.671	1.7e ⁻⁴	0.253		
	pTau	0.444	0.023	0.174		
	Systolic BP	0.431	0.028	0.313		
	Cholesterol	-0.060		0.495	0.014	
	NfL	0.169		0.480	0.018	
	RANTES	0.165		-0.567	<mark>0.004</mark>	
	SBC dAge	0.209		0.473	0.055	
CDR-SB	GFAP	0.511	0.008	0.272		
	RANTES	<mark>0.398</mark>	<mark>0.044</mark>	<mark>-0.445</mark>	<mark>0.004</mark>	
	Systolic BP	0.435	0.026	0.388		
Cog12	GFAP	0.589	0.002	0.272		
	pTau	0.410	0.037	0.133		
	Cholesterol	-0.082		0.550	0.005	
	NfL	0.083		0.458	0.024	
	RANTES	-0.033		<mark>-0.637</mark>	<mark>0.001</mark>	
	SBC dAge	0.167		0.455	0.067	
MMSE	Cholesterol	0.020		-0.468	0.021	
	RANTES	0.003		<mark>0.516</mark>	<mark>0.010</mark>	
	SBC dAge	-0.011		-0.580	0.015	
CGIC	C1q	-0.395	0.046	0.294		
	pTau	0.414	0.036	0.208		
	SBC dAge	0.017		0.467	0.059	
ADL	CRP	-0.458	0.019	0.322		
	Fructosamine	0.391	0.048	-0.459	0.024	
	HOMA2 %B	-0.395	0.046	-0.014		
	NfL	-0.039		-0.642	0.001	
ADCOMS	GFAP	0.497	0.010	0.294		
	pTau 217	0.393	0.047	0.169		
	Systolic BP	0.525	0.006	0.370		
	NfL	0.120		0.454	0.026	
	RANTES	0.227		<mark>-0.575</mark>	<mark>0.003</mark>	
	SBC dAge	0.134		0.469	0.058	

- The chemokine RANTES can alter astrocyte driven microglial M1>M2 transition
 - For placebo subjects, increased RANTES change from baseline was associated with <u>decline</u> in Clinical Dementia Rating
 - For bezisterim subjects, increased RANTES was associated with improvements in neurological assessments
- Directions of improvement in scales
 - Increased MMSE and ADL = improvement
 - Decreased GST, CDR-SB, CGIC, & ADCOMS = improvement

Meeouwo	Diomorkov	Plac	ebo	Bezisterim		
Measure	Biomarker	Pearson R	P<0.1	Pearson R	P<0.1	
GST	GFAP	0.671	1.7e-4	0.253		
	pTau	0.444	0.023	0.174		
	Systolic BP	0.431	0.028	0.313		
	Cholesterol	-0.060		0.495	0.014	
	NfL	0.169		0.480	0.018	
	RANTES	0.165		-0.567	0.004	
	SBC dAge	0.209		<mark>0.473</mark>	<mark>0.055</mark>	
CDR-SB	GFAP	0.511	0.008	0.272		
	RANTES	0.398	0.044	-0.445	0.004	
	Systolic BP	0.435	0.026	0.388		
Cog12	GFAP	0.589	0.002	0.272		
	pTau	0.410	0.037	0.133		
	Cholesterol	-0.082		0.550	0.005	
	NfL	0.083		0.458	0.024	
	RANTES	-0.033		-0.637	0.001	
	SBC dAge	0.167		<mark>0.455</mark>	<mark>0.067</mark>	
MMSE	Cholesterol	0.020		-0.468	0.021	
	RANTES	0.003		0.516	0.010	
	SBC dAge	-0.011		<mark>-0.580</mark>	<mark>0.015</mark>	
CGIC	C1q	-0.395	0.046	0.294		
	pTau	0.414	0.036	0.208		
	SBC dAge	0.017		<mark>0.467</mark>	<mark>0.059</mark>	
ADL	CRP	-0.458	0.019	0.322		
	Fructosamine	0.391	0.048	-0.459	0.024	
	HOMA2 %B	-0.395	0.046	-0.014		
	NfL	-0.039		-0.642	0.001	
ADCOMS	GFAP	0.497	0.010	0.294		
	pTau 217	0.393	0.047	0.169		
	Systolic BP	0.525	0.006	0.370		
	NfL	0.120		0.454	0.026	
	RANTES	0.227		-0.575	0.003	
	SBC dAge	0.134		<mark>0.469</mark>	<mark>0.058</mark>	

- SkinBloodClock (SBC) dAge at completion correlated with neurological improvements in bezisterim subjects. There were no correlations in placebo subjects.
- Directions of improvement in scales
- Increased MMSE and ADL = improvement
- Decreased GST, CDR-SB, CGIC, & ADCOMS = improvement

Bezisterim Increased Methylation of Gene Promoters may be Associated with Clinical Improvements

- We identified 18 significant (FDR *p*<0.05) **bezisterim** subject clinical measure changes from baseline correlations with individual CpGs of genes that may be **beneficial** for AD subjects
- There were 6 significant (FDR p<0.05) placebo subject clinical measure changes from baseline correlations with CpGs of metabolic, inflammatory and dementia biomarker genes that may be detrimental for AD subjects
- The data suggest that bezisterim might be altering methylation of AD related genes in concert with improvements in cognition and function

Bezisterim Summary

- Analog of the neurosteroid βAET and may recapitulate, in humans, the beneficial effects on diseases of aging seen with DHEA in rodents
- Decreases inflammatory signal transduction and restores insulin sensitivity
- Well-tolerated safety profile to date
- Decreases biological age acceleration
- Bezisterim may act predominantly in myeloid innate immune cells (monocytes, macrophages, astrocytes, microglia)
- May act through RANTES transition of macrophage and microglia (M1) inflammatory to (M2) restorative programs through modification of the monocyte DNA methylome
- Bezisterim subjects had higher DNAm of genes enriched in neurodegeneration pathways
- Alters correlations with inflammatory metabolic disease, and biologic age biomarkers
- May improves Parkinson's disease motoric activity and Alzheimer's disease metabolic inflammation, cognition, function, imaging and biomarkers in clinical studies
- Bezisterim may improve systems dysregulation to restore homeostasis through expression changes of key neurodegeneration gene products
- This may be the first study to demonstrate improvement in longevity and clinical benefit in a disease of aging

Collaborators

biovie

Jiayan Yan Clarence Ahlem Penelope Markham Jeffrey Zhang Harvey Yuan Lixia Wang Stephen O'Quinn Joseph Palumbo

Juozas Gordevicius Bobby Brooke

HARVARD MEDICAL SCHOOL AND BRIGHAM AND WOMEN'S HOSPITAL

Donald Simonson, MD, MPH, ScD

HURDLE

Lisa Schmunk Hira Javaid Dani Martin-Herranz