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In 2000, we asked “Why does DHEA show 
anti-inflammatory, insulin-sensitizing and anti-
aging effects in mice, and not in humans?”
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• Bezisterim (formerly NE3107) 
• Binds ERK5 and inhibits inflammatory,6,7 but not homeostatic ERK, NF-κB 

and TNF signaling8 
• Decreased inflammatory mediators and insulin resistance in animal models 

and subjects with obese impaired glucose tolerance or type 2 diabetes9

• Improved motor activity and decreased neurodegeneration in a Parkinson’s 
disease (PD) Marmoset model10 and in a phase 2a PD study11

• Improved neurological, neuroimaging, and biomarkers in an open-label 14-
week phase 2 study in MCI and mild AD12,13

• Has a well-tolerated safety profile to date11,12

Background
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• The primary goal of our study was to investigate the associations between metabolic 
inflammation, biological aging, and dementia in a human clinical investigation

• The specific aim tested whether bezisterim could impact physiologic processes 
consistent with neurocognitive decline and diseases of aging 

• Methodology included:
• Epigenetic methylation (clock: Horvath Epigenetic Clock Development 

Foundation14)
• Inflammation (clock: HURDLE/Chronomics analyses15-18)
• Principal component analyses
• Divergent correlational analyses

• Data from these analyses suggests that bezisterim may induce epigenetic 
remodeling associations between metabolic inflammation, biological aging, and 
dementia

Does Bezisterim Modify Metabolic Inflammation and “Longevity” 
Relevant to Processes Underlying Dementia?  

4



• The trial started during the COVID-19 pandemic and enrolled a total of 
439 subjects through 39 sites

• We reported that upon trial completion, the Company found significant deviation 
from protocol and Good Clinical Practice violations at 15 sites, causing the 
Company to exclude all subjects from these sites  

• After exclusions for GCP violations, 57 subjects remained in the Per-Protocol 
population; those assigned to bezisterim were verified to have taken study drug 
from pharmacokinetics data, and 7 subjects randomized to placebo discontinued 
before day 150

• Baseline and completion data were available for 50 subjects (bezisterim, n=24 
and placebo, n=26); and DNA methylation data were available for 33 of this cohort  

Patient Disposition and Data Source for This Presentation
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In the Per-Protocol (PP) population (n=57)
• Treatment emergent adverse events (TEAEs) occurred in 62.5% (n=15) of patients in 

the bezisterim group and 72.7% (n=24) of patients in the placebo group   
• Bezisterim TEAEs ≥5% and > Placebo

Headache (12.5%; n=3) vs (0%; n=0)
• Treatment-related TEAEs occurred in 12.5% (n=3) of patients in the bezisterim group 

and 18.2% (n=6) of patients in the placebo group
• Serious AEs occurred in 4 patients (bezisterim, n=1; Placebo, n=3); none were 

treatment-related
• There was 1 non-treatment–related death in the bezisterim group. The patient was a 

70-year-old male who died of a respiratory arrest 
• 3 patients in the placebo group and none in the bezisterim group discontinued due to 

an AE

The PP Population included randomized participants who took at least 1 dose of study intervention and had a baseline 
and at least 1 post-baseline efficacy assessment. Participants from study sites who were identified as being in persistent 
violation of GCPs or who had a major protocol deviation (such as improper rater certification) that could impact primary 
efficacy were excluded. This analysis is to be based on the actual treatment the participant received. 

Safety Findings: Bezisterim Treatment Was Well Tolerated 
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Bezisterim Showed Improvements Over Time in Primary and 
Secondary Endpoints
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Bezisterim vs placebo Published data at 1.5 yearsa

Co-Primary
CDR-SB

(Lower=improvement)
−0.95 (68%) −0.45 (27%)19

−0.39 (22%)20

ADAS-Cog12
(Lower=improvement)

−0.94 (26%) −1.44 (25%)19

−1.40 (27%)20

Secondary
MMSE

(Higher=improvement)
+1.02 (40%) +0.6 (18%)20

ADCS-ADL
(Higher=improvement)

+3.08 (47%) +2.0 (36%)19

ADCS-CGIC
(Lower=improvement)

−0.43 (139%)

ADCOMS
(Lower=improvement)

−0.03 (27%) −0.05 (23%)20

Treatment Modified Change From Baseline in Primary and 
Secondary Endpoints Comparable to Approved Medications

8ADAS-Cog12, 12-item cognitive subscale of the Alzheimer’s Disease Assessment Scale; ADCOMS, Alzheimer’s Disease Composite Score; ADCS-ADL, Alzheimer’s Disease Cooperative Study—Activities 
of Daily Living; ADCS-CGIC, Alzheimer’s Disease Cooperative Study—Clinical Global Impression of Change; CDR, Clinical Dementia Rating.

• After the exclusions, the study was no longer powered for endpoints, but week 30 data suggest bezisterim vs placebo 
is comparable to results reported from clinical trials by approved medications

aOther published data at 18 months data for lecanemab19 and aducanumab.20



Could Bezisterim Treatment Modify Biological Age in 7 Months?

• Individuals appear to age at different rates 
• Analysis of DNA methylation “clocks” can provide evidence of changes in 

gene expression related to aging (biological age)
• The difference between the biological age and the chronological age 

(dAge) is a measure of age acceleration
• At study completion, available DNA samples from per protocol subjects 

(n=33) were analyzed by the Epigenetic Clock Development Foundation 
using the Horvath SkinBlood Clock14

• DNA methylation data were also analyzed by Hurdle/Chronomics for 
PhenoAge, Grim Age, AgeHannum, and their new InflammAge Clock15-18



Bezisterim Modified dAgea for 5 Aging Clocks
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Bezisterim Modification of Monocyte DNA Methylation May Alter SBC 
Correction for Cell Type

Correlations of cell type clocks and hematology results: 
• Placebo hematology % monocytes is correlated with Mono Clock
• Bezisterim hematology % monocytes is not correlated with Mono Clock
• Bezisterim’s impact on dAge may be explained by modification of monocyte DNA methylome, 

changing from a pro-inflammatory to an anti-inflammatory state (M1M2 transition hypothesis) 

a Significance between correlations=Z test statistic of Fisher’s to Z transformation
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• Severe COVID-19 programs durable epigenetic changes and hyper-
activation in monocytes

• Circulating HSPC capture post-COVID-19 changes in hematopoiesis and 
stem cell programs

• Post-COVID-19 HSPC convey epigenetic and transcriptional memory to 
mature progeny cells

• IL-6 contributes to epigenetic reprogramming of mouse and human HSPC 
and myeloid cells

Precedent For Epigenetic Memory In Long Covid Monocytes21
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Correlations and Principal Components

• Correlations
• For DNA methylation data and neurological assessments from per-protocol subjects with 

available DNA methylation data that passed QC (n = 33), the data was normalizeda in 
separate correlation matrices for bezisterim and placebo

• For clinical measure correlations, data from per-protocol subjects that completed >150 days 
treatment (n = 50) were normalized in separate matrices for bezisterim and placebo

• Principal Component Analysis
• Principal component analysis (PCA) is a dimensionality reduction and machine learning 

method used to simplify a large data set into a smaller set while still maintaining significant 
patterns and trends22

• PCA was performed to reduce data dimensionality for the dAge correlations

a Missing data values were Bayesian imputed, outliers were removed, and results were converted to Z’ scores.  



Bezisterim Decreased Age Acceleration Was Correlated 
With Improvements In Neurologic Assessments

SkinBlood 
Clock

Neurologic 
Assessment

Placebo 
n = 16

Bezisterim 
n = 17

Pearson r p Pearson r p
dAge GST 0.209 0.438 0.473 0.055

CDR-SB 0.110 0.686 0.413 0.099
ADAS-Cog12 0.167 0.537 0.455 0.067
MMSE −0.011 0.967 −0.580 0.015
ADCOMS 0.134 0.621 0.469 0.058
ADCS-CGIC 0.017 0.952 0.467 0.059

• Placebo completion
• No correlations with neurologic assessments

• Bezisterim completion
• Decreased age acceleration correlated with improvements

• GST, MMSE, CDR-SB, ADCOMS, ADAS-Cog12, ADCS-CGIC
 

 



Bezisterim Modified Interdependence of Neurological Assessments 

For neurological assessments Red = Decline, Green = Improvement. 

Dementia biomarkers 
↑GFAP with ↑GST, ↓MMSE, ↑CDR-SB, 
↑ADCOMS, ↑Cog12
↑pTau217 with ↑GST, ↑ADCOMS, ↑Cog12, 
↑CGIC

Metabolic measures
↑Blood Pressure with ↑GST, ↑CDR-SB, 
↑ADCOMS
↑Glucose with ↑CDR-SB
↑Beta cell insulin production with ↓ADL

Inflammatory measures
↑CRP with ↑CDR-SB, ↓ADL
↓C1q with ↑CGIC

Placebo was correlated with worsening 
biomarkers/measures

• ↓Fructosamine with ↑ADL 
(placebo: ↓Fructosamine with ↓ADL) p=0.003a

• ↑RANTES with ↓CDR-SB 
(placebo: ↑RANTES with ↑CDR-SB) p=0.003a

Bezisterim yielded inverse correlations with 
improvement vs placebo

• ↓NfL with ↓GST, ↑MMSE, ↓CDR-SB, ↓Cog12, 
↓ADCOMS, ↑ADL

• ↓Cholesterol with ↓GST, ↑MMSE, ↓CDR-SB, ↓Cog12
• ↑RANTES with ↓GST, ↑MMSE, ↓ADCOMS, ↓Cog12

Bezisterim correlated with additional improvements

a Z test statistic of Fisher Z transformation.



Placebo dAge Principal Component Analysis: 
Divergent PC1 vs PC2 suggestive of systems dysregulation in placebo-treated patients
  

PCA1 included metabolic, inflammation, & 
dementia biomarkers
• Metabolic 
(Glc, HOMA2, Trig, Chol, WHR, Ins, Fruc)
 
• Inflammation 
(TNF, CRP, RANTES, MCP1, C1q)

• Dementia Biomarkers
(Ab42/40, pTau, GFAP, NfL)

PCA2 included
• Neurological assessments

• Age

• DNA methylation

• dAge was only weakly associated with outcomes



Bezisterim Modified dAge PCA:
Single PC1 suggestive of re-regulation in Bezisterim-treated patients

• Only one PCA Identified
Neurological assessments
Metabolic
(Glc, Insulin Sensitivity, Trig, Chol, BP)
Microglia-related
(% Mono, RANTES)
DNA methylation
(dAge)

Excludes 
Inflammatory Biomarkers
(CRP, C1q, TNF, MCP1)
Dementia Biomarkers
(pTau, Ab42/40, NfL, GFAP)



Treatment-Mediated PCA dAge Summary

• For placebo-treated subjects at study completion 
• PC1 identified metabolic, inflammation, and dementia biomarkers
• PC2 identified chronological age and neurological assessments; age acceleration 

was only weakly associated with outcomes

• For bezisterim-treated subjects
• Only PC1 was identified, combining metabolism, innate immunity, and age 

acceleration, and excluding inflammatory and dementia biomarkers  
• All 31 measures were significant in principal component regression (PCR) for dAge 

with bezisterim, with no significance for placebo



Bezisterim Modified Correlations Between Clinical Measures 
and DNA Methylation of AD-Associated Genes 
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These modifications were significant at FDR <0.05, and Fisher transformation (p<0.05) 
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• ~21 significant correlations with individual gene CpGs
• 15 were significant for bezisterim and not for placebo
• 6 were significant for placebo and not for bezisterim
• 15 correlations were in promoters, enhancers of CpG islands

• These correlations extend the Principal Component Analyses
• Aging clocks; clinical correlations; epigenetic modification of AD-related genes
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EXAMPLE:  Decreased Transmembrane protein 237 is associated with neurodevelopment delays. Decreased TMEM237 
Promoter methylation (increased expression) correlates with improved ADCOMS 



Divergent Correlations Were Observed With RANTES 

• Placebo Week 30
• Increased RANTES 

• Significant correlates with CDR-SB (decline), TNF, Triglycerides 
• Trending correlations with baseline WHR, increased CRP & C1q

• Bezisterim Week 30
• Increased RANTES 

• Significant correlates with improved MMSE, CDR-SB, ADCOMS, ADAS-Cog12, & GST
• Trending correlations with improved ADCS-CGIC, Weight and decreased TNF



Proinflammatory and Anti-inflammatory Myeloid Cell States23

• Monocytes, macrophages, astrocytes and microglia can exist in a 
continuum between the extremes (A1 and M1: proinflammatory cytokines 
and chemokines, ROS, tissue destruction, to A2 and M2: anti-inflammatory 
cytokines, phagocytic, tissue repair)

• MCP1 (chemokine CCL2) recruits monocytes and microglia; depending on 
the milieu, they can be M1 or M2 biased

• Aβ, pTau, ROS and proinflammatory cytokines and chemokines activate 
astrogliosis leading to A1 astrocytes and M1 microglia



RANTES (CCL5), Receptor = CCR5 

• Proinflammatory24

• CCL5 is a “Janus” chemokine 
contributing to both pro- and anti-
inflammatory programs

• Low grade inflammation can 
stimulate inflammatory cytokine 
and chemokine production 

• This drives A1 astrocytes and M1 
microglia (NF-κB, cytokines, 
oxidative stress) 

• These insults are associated with 
AD progression

• Anti-inflammatory
• CCL5 important in neurotransmission, 

neuron development and learning and 
memory

• CCL5 is decreased in AD plasma
• Deficiency induces astrocyte activation, 

Aβ deposit, impaired memory function
• CCL5 is neuroprotective against ROS in 

neurons
• CCR5 deletion associated with earlier 

dementia onset
• CCL5 recruits microglia M2 immune 

response
• CCR5 antagonist decreases CCR2-

induced NF-kB & Aβ; CCL5 ko mouse 
microglia have increased NF-κB, MCP1 
and Aβ production

Inhibition of NF-κB can result in A2 and M2 transitions, including stimulation 
of anti-inflammatory cytokines, tissue repair and Aβ phagocytosis



• In this small per-protocol sample, compared to placebo, bezisterim appeared to: 
• Improve neurological assessments 
• Decrease biological age 
• Realign biological aging with neurological assessments

• Correlations, PCA and PCR (Principal Component Regression) are consistent with the 
hypothesis that bezisterim, by decreasing TNF- and MCP1-stimulated NF-κB and 
neuroinflammation, might promote a transition of microglia from inflammatory and destructive to 
anti-inflammatory, phagocytic and restorative cells

• In the absence of NF-κB and TNF signaling, RANTES signaling may transition astroglia and 
microglia to anti-inflammatory, phagocytic (degrading Aβ), restorative phenotypes 

• Bezisterim appeared to change the monocyte phenotype and DNA methylome
• These data suggest bezisterim may improve probable AD via pathways related to inflammation 
• An additional trial under strict GCP oversight will be required to confirm these findings
• It is possible that DNA methylation aging clocks may prove to be valuable biomarkers for 

neurodegeneration

Summary
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• Aβ42/40, ratio of amyloid β 42 to amyloid β 40

• AD, Alzheimer’s disease

• ADAS-Cog12, 12-item cognitive subscale of the Alzheimer’s Disease Assessment Scale

• ADCOMS, Alzheimer’s Disease Composite Score

• ADCS-ADL, Alzheimer’s Disease Cooperative Study—Activities of Daily Living

• ADCS-CGIC, Alzheimer’s Disease Cooperative Study—Clinical Global Impression of Change

• BP, blood pressure

• cAge, chronological age

• CDR-SB, Clinical Dementia Rating Sum of Boxes

• Chol, cholesterol

• COVID-19, coronavirus 2019

• CRP, C-reactive protein

• CSF, cerebrospinal fluid

• dAge, age acceleration (Horvath SkinBlood Clock age – chronological age)

• ERK, extracellular signal-regulated kinase

• GFAP, glial fibrillary acidic protein

• GST, Glutathione S-transferase

• HOMA2, Homeostatic Model Assessment 2
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• IGT, impaired glucose tolerance

• IR, HOMA2 insulin resistance

• MCP1, monocyte chemoattractant protein-1

• MMSE, mini-mental state exam

• Mono, monocytes

• NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells 

• NfL, neurofilament light chain

• MDS-UPDRS, Movement Disorder Society-Unified Parkinson's Disease Rating Scale

• NPI, Neurological Pupil Index

• %B, HOMA2 % beta cell function

• %S, HOMA2 % insulin sensitivity

• PCA, Principal Component Analysis

• PD, Parkinson’s disease

• pTau217, phosphorylated tau

• RANTES, Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted

• TNF, tumor necrosis factor alpha

• Trig, triglycerides

• TSH, thyroid-stimulating hormone
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